A281425
a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).
Original entry on oeis.org
1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0
-
b:= proc(n, k) option remember; `if`(k=0,
combinat[numbpart](n), b(n, k-1)-b(n-1, k-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35); # Alois P. Heinz, Dec 21 2024
-
Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]
Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]
Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]
Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten
Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)
A292508
Number A(n,k) of partitions of n with k kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 2, 1, 4, 7, 7, 5, 2, 1, 5, 11, 14, 12, 7, 4, 1, 6, 16, 25, 26, 19, 11, 4, 1, 7, 22, 41, 51, 45, 30, 15, 7, 1, 8, 29, 63, 92, 96, 75, 45, 22, 8, 1, 9, 37, 92, 155, 188, 171, 120, 67, 30, 12, 1, 10, 46, 129, 247, 343, 359, 291, 187, 97, 42, 14
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 2, 4, 7, 11, 16, 22, 29, 37, ...
1, 3, 7, 14, 25, 41, 63, 92, 129, ...
2, 5, 12, 26, 51, 92, 155, 247, 376, ...
2, 7, 19, 45, 96, 188, 343, 590, 966, ...
4, 11, 30, 75, 171, 359, 702, 1292, 2258, ...
4, 15, 45, 120, 291, 650, 1352, 2644, 4902, ...
7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
Columns k=0-10 give:
A002865,
A000041,
A000070,
A014153,
A014160,
A014161,
A120477,
A320753,
A320754,
A320755,
A320756.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1,
A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n),
A(n-1, k)+A(n, k-1))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# third Maple program:
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)
A292503
Number of partitions of n with n sorts of part 1 which are introduced in ascending order.
Original entry on oeis.org
1, 1, 3, 7, 20, 63, 233, 966, 4454, 22404, 121616, 706362, 4361977, 28494493, 196087988, 1416515642, 10709058487, 84505818259, 694397612486, 5929368380664, 52513737017847, 481577858196052, 4565851595293151, 44692014464166068, 451058715629365617
Offset: 0
a(2) = 3: 2, 1a1a, 1a1b.
a(3) = 7: 3, 21a, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1a1b1c.
-
f:= (n, k)-> add(Stirling2(n, j), j=0..k):
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
f(n, k), add(b(n-i*j, i-1, k), j=0..n/i))
end:
a:= n-> b(n$3):
seq(a(n), n=0..30);
-
f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}];
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
A292462
Number of partitions of n with n sorts of part 1.
Original entry on oeis.org
1, 1, 5, 31, 278, 3287, 48256, 843567, 17081639, 392869430, 10112244792, 287927207846, 8984122319997, 304828239096197, 11173376516829974, 439988449921648076, 18523908107054523591, 830292183207722271065, 39475390430795389762048, 1984220622132901208082220
Offset: 0
a(2) = 5: 2, 1a1a, 1a1b, 1b1a, 1b1b.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^n,
`if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..23);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^n, If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
a[0] = 1; a[n_] := b[n, n, n];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 19 2018, translated from Maple *)
A292507
Number of partitions of n with up to n distinct kinds of 1.
Original entry on oeis.org
1, 1, 2, 5, 13, 33, 82, 201, 488, 1176, 2817, 6714, 15931, 37647, 88628, 207914, 486158, 1133304, 2634339, 6106953, 14121157, 32573842, 74968044, 172164086, 394561089, 902471184, 2060338222, 4695324425, 10681885697, 24261437446, 55017434305, 124573678280
Offset: 0
a(3) = 5: 3, 21a, 21b, 21c, 1a1b1c.
a(4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1,
binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..35);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
A292613
a(n) = [x^n] 1/(1-x)^n * Product_{k=1..n} 1/(1-x^k).
Original entry on oeis.org
1, 2, 7, 25, 92, 343, 1292, 4902, 18703, 71677, 275694, 1063636, 4114131, 15948762, 61946290, 241013869, 939125870, 3664299332, 14314777054, 55982787136, 219158088711, 858728875776, 3367576480747, 13216392846128, 51905939548950, 203989227456894, 802164259099114
Offset: 0
Illustration of comment for n=3, a(3)=25 :
Among the 11 integer partitions of 6, 3 have at least 3 ones.
3,1,1,1 ; 2,1,1,1,1; 1,1,1,1,1,1;
There are respectively 1, 4 and 20 ways to pick 3 of these.
-
Table[SeriesCoefficient[1/(1-x)^n*Product[1/(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
A292541
a(n) is n-th term of the Euler transform of -n,1,1,1,... .
Original entry on oeis.org
1, -1, 2, -3, 5, -9, 18, -39, 88, -200, 449, -988, 2131, -4527, 9540, -20090, 42510, -90596, 194299, -418105, 899493, -1929000, 4116944, -8742002, 18484225, -38974978, 82086786, -172927251, 364700265, -770223900, 1628602725, -3445907334, 7291399538
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
a:= n-> b(n$2, -n):
seq(a(n), n=0..35);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n, -n):
seq(a(n), n=0..35);
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=1,
combinat[numbpart](n), b(n, k+1)-b(n-1, k+1)))
end:
a:= n-> b(n, -n):
seq(a(n), n=0..35);
-
Table[SeriesCoefficient[(1 - x)^n*Product[1/(1 - x^k), {k, 2, n}], {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, May 07 2018 *)
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 1, PartitionsP[n], b[n, k + 1] - b[n - 1, k + 1]]]; Table[b[n, -n], {n, 0, 40}] (* Vaclav Kotesovec, May 07 2018, after Alois P. Heinz *)
A304781
a(n) = [x^n] (1/(1 - x)^n)*Product_{k>=1} (1 + x^k).
Original entry on oeis.org
1, 2, 6, 21, 75, 274, 1016, 3807, 14377, 54627, 208584, 799669, 3076167, 11867511, 45897145, 177888715, 690770763, 2686879415, 10466761637, 40828165464, 159453481037, 623427464093, 2439907421914, 9557831470082, 37472409664888, 147028505564603, 577302980976146
Offset: 0
-
Table[SeriesCoefficient[1/(1 - x)^n Product[(1 + x^k), {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[1/(1 - x)^n Product[1/(1 - x^(2 k - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[1/(1 - x)^n Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[QPochhammer[-1, x]/(2 (1 - x)^n), {x, 0, n}], {n, 0, 26}]
Showing 1-8 of 8 results.
Comments