A292745
Number A(n,k) of partitions of n with k sorts of part 1 which are introduced in ascending order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 3, 6, 5, 2, 1, 1, 3, 7, 13, 7, 4, 1, 1, 3, 7, 19, 26, 11, 4, 1, 1, 3, 7, 20, 52, 54, 15, 7, 1, 1, 3, 7, 20, 62, 151, 108, 22, 8, 1, 1, 3, 7, 20, 63, 217, 442, 219, 30, 12, 1, 1, 3, 7, 20, 63, 232, 803, 1314, 439, 42, 14
Offset: 0
A(3,2) = 6: 3, 21a, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 3, 3, 3, 3, 3, 3, ...
1, 3, 6, 7, 7, 7, 7, 7, 7, ...
2, 5, 13, 19, 20, 20, 20, 20, 20, ...
2, 7, 26, 52, 62, 63, 63, 63, 63, ...
4, 11, 54, 151, 217, 232, 233, 233, 233, ...
4, 15, 108, 442, 803, 944, 965, 966, 966, ...
7, 22, 219, 1314, 3092, 4158, 4425, 4453, 4454, ...
Columns k=0-10 give:
A002865,
A000041,
A320733,
A320734,
A320735,
A320736,
A320737,
A320738,
A320739,
A320740,
A320741.
-
f:= (n, k)-> add(Stirling2(n, j), j=0..k):
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
f(n, k), add(b(n-i*j, i-1, k), j=0..n/i))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}];
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from Maple *)
A292746
Triangle read by rows: T(n,k) (n>=0, 0<=k<=n) = number of partitions of n with exactly k kinds of 1's which are introduced in ascending order.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 2, 3, 1, 2, 3, 8, 6, 1, 2, 5, 19, 26, 10, 1, 4, 7, 43, 97, 66, 15, 1, 4, 11, 93, 334, 361, 141, 21, 1, 7, 15, 197, 1095, 1778, 1066, 267, 28, 1, 8, 22, 409, 3482, 8207, 7108, 2668, 463, 36, 1, 12, 30, 840, 10855, 36310, 43747, 23116, 5909, 751, 45, 1
Offset: 0
T(3,0) = 1: 3.
T(3,1) = 2: 21a, 1a1a1a.
T(3,2) = 3: 1a1a1b, 1a1b1a, 1a1b1b. (The two kinds of 1's are labeled 1a and 1b)
T(3,3) = 1: 1a1b1c.
Triangle T(n,k) begins:
1;
0, 1;
1, 1, 1;
1, 2, 3, 1;
2, 3, 8, 6, 1;
2, 5, 19, 26, 10, 1;
4, 7, 43, 97, 66, 15, 1;
4, 11, 93, 334, 361, 141, 21, 1;
7, 15, 197, 1095, 1778, 1066, 267, 28, 1;
8, 22, 409, 3482, 8207, 7108, 2668, 463, 36, 1;
...
Columns k=0-10 give:
A002865,
A000041(n-1) for n>0,
A259401(n-2) for n>1,
A320816,
A320817,
A320818,
A320819,
A320820,
A320821,
A320822,
A320823.
-
f:= (n, k)-> add(Stirling2(n, j), j=0..k):
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
f(n, k), add(b(n-i*j, i-1, k), j=0..n/i))
end:
T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):
seq(seq(T(n, k), k=0..n), n=0..14);
# second Maple program:
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
k^n, b(n, i-1, k) +b(n-i, min(i, n-i), k))
end:
T:= (n, k)-> add((-1)^i*b(n$2, k-i)/((k-i)!*i!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..14);
-
f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}];
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 17 2018, translated from Maple *)
A292463
Number of partitions of n with n kinds of 1.
Original entry on oeis.org
1, 1, 4, 14, 51, 188, 702, 2644, 10026, 38223, 146359, 562456, 2168134, 8379539, 32459199, 125984039, 489837300, 1907490728, 7438346255, 29042470132, 113522618066, 444199913556, 1739735079466, 6819657196928, 26753893533257, 105034060120469, 412637434996367
Offset: 0
a(2) = 4: 2, 1a1a, 1a1b, 1b1b.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
a:= n-> b(n$3):
seq(a(n), n=0..30);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=1,
combinat[numbpart](n), b(n-1, k) +b(n, k-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
-
Table[SeriesCoefficient[1/(1-x)^(n-1) * Product[1/(1-x^k), {k,1,n}], {x,0,n}], {n,0,30}] (* Vaclav Kotesovec, Sep 19 2017 *)
A292462
Number of partitions of n with n sorts of part 1.
Original entry on oeis.org
1, 1, 5, 31, 278, 3287, 48256, 843567, 17081639, 392869430, 10112244792, 287927207846, 8984122319997, 304828239096197, 11173376516829974, 439988449921648076, 18523908107054523591, 830292183207722271065, 39475390430795389762048, 1984220622132901208082220
Offset: 0
a(2) = 5: 2, 1a1a, 1a1b, 1b1a, 1b1b.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^n,
`if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..23);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^n, If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
a[0] = 1; a[n_] := b[n, n, n];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 19 2018, translated from Maple *)
A292507
Number of partitions of n with up to n distinct kinds of 1.
Original entry on oeis.org
1, 1, 2, 5, 13, 33, 82, 201, 488, 1176, 2817, 6714, 15931, 37647, 88628, 207914, 486158, 1133304, 2634339, 6106953, 14121157, 32573842, 74968044, 172164086, 394561089, 902471184, 2060338222, 4695324425, 10681885697, 24261437446, 55017434305, 124573678280
Offset: 0
a(3) = 5: 3, 21a, 21b, 21c, 1a1b1c.
a(4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1,
binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..35);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
A014326
Convolution of partition numbers and Bell numbers.
Original entry on oeis.org
1, 2, 5, 12, 32, 95, 328, 1294, 5748, 28152, 149768, 856130, 5218107, 33712600, 229800588, 1646316230, 12355374717, 96861192976, 791258805462, 6720627186126, 59234364203973, 540812222400025, 5106663817693176, 49798678281859244, 500857393911224861
Offset: 0
-
A014326:= func< n | (&+[NumberOfPartitions(j)*Bell(n-j): j in [0..n]]) >;
[A014326(n): n in [0..40]]; // G. C. Greubel, Jan 08 2023
-
with(combinat):
a:= n-> add(numbpart(k)*bell(n-k), k=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 15 2015
-
a[n_]:= Sum[PartitionsP[k]*BellB[n-k], {k,0,n}];
Table[a[n], {n,0,30}] (* Jean-François Alcover, Dec 06 2016 *)
-
def A014326(n): return sum(number_of_partitions(j)*bell_number(n-j) for j in range(n+1))
[A014326(n) for n in range(41)] # G. C. Greubel, Jan 08 2023
Showing 1-6 of 6 results.