cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000070 a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0

Views

Author

Keywords

Comments

Also the total number of all different integers in all partitions of n + 1. E.g., a(3) = 7 because the partitions of 4 comprise the sets {1},{1, 2},{2},{1, 3},{4} of different integers and their total number is 7. - Thomas Wieder, Apr 10 2004
With offset 1, also the number of 1's in all partitions of n. For example, 3 = 2+1 = 1+1+1, a(3) = (zero 1's) + (one 1's) + (three 1's), so a(3) = 4. - Naohiro Nomoto, Jan 09 2002. See the Riordan reference p. 184, last formula, first term, for a proof based on Fine's identity given in Riordan, p. 182 (20).
Also, number of partitions of n into parts when there are two kinds of parts of size one.
Also number of graphical forest partitions of 2n+2.
a(n) = count 2 for each partition of n and 1 for each decrement. E.g., the partitions of 4 are 4 (2), 31 (3), 22 (2), 211 (3) and 1111 (2). 2 + 3 + 2 + 3 + 2 = 12. This is related to the Ferrers representation. We can see that taking the Ferrers diagram for each partition of n and adding a new * to all available columns, we generate each partition of n+1, but with repeats (A058884). - Jon Perry, Feb 06 2004
Also the number of 1-transitions among all integer partitions of n. A 1-transition is the removal of a digit "1" from a partition containing at least one "1" and subsequent addition of that "1" to another digit in that partition. This other digit may be a "1" also, but all digits of equal amount are considered as undistinquishable (unlabeled). E.g., for n=6 one has the partition [1113] for which the following two 1-transitions are possible: [1113] --> [123] and [1113] --> [114]. The 1-transitions of n form a partial order (poset). For n=6 one has 12 1-transitions: [111111] --> [11112], [11112] --> [1113], [11112] --> [1122], [1113] --> [114], [1113] --> [123], [1122] --> [123], [1122] --> [222], [123] --> [33], [123] --> [24], [114] --> [15], [114] --> [24], [15] --> [6]. - Thomas Wieder, Mar 08 2005
Also number of partitions of 2n+1 where one of the parts is greater than n (also where there are more than n parts) and of 2n+2 where one of the parts is greater than n+1 (or with more than n+1 parts). - Henry Bottomley, Aug 01 2005
Equals left border of triangle A137633 - Gary W. Adamson, Jan 31 2008
Equals row sums of triangle A027293. - Gary W. Adamson, Oct 26 2008
Convolved with A010815 = [1,1,1,...]. n-th partial sum of A000041 convolved with A010815 = the binomial sequence starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
Equals A036469 convolved with A035363. - Gary W. Adamson, Jun 09 2009
a(A004526(n)) = A025065(n). - Reinhard Zumkeller, Jan 23 2010
a(n) = if n <= 1 then A054225(1,n) else A054225(n,1). - Reinhard Zumkeller, Nov 30 2011
Also the total number of 1's among all hook-lengths in all partitions of n. E.g., a(4)=7 because hooks of the partitions of n = 4 comprise the multisets {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} and their total number of 1's is 7. - T. Amdeberhan, Jun 03 2012
With offset 1, a(n) is also the difference between the sum of largest and the sum of second largest elements in all partitions of n. More generally, the number of occurrences of k in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+1)st largest elements in all partitions of n. And more generally, the sum of the number of occurrences of k, k+1, k+2..k+m in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+m+1)st largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
a(0) = 1 and 2*a(n-1) >= a(n) for all n > 0. Hence a(n) is a complete sequence. - Frank M Jackson, Apr 08 2013
a(n) is the number of conjugacy classes in the order-preserving, order-decreasing and (order-preserving and order-decreasing) injective transformation semigroups. - Ugbene Ifeanyichukwu, Jun 03 2015
a(n) is also the number of unlabeled subgraphs of the n-cycle C_n. For example, for n = 3, there are 3 unlabeled subgraphs of the triangle C_3 with 0 edges, 2 with 1 edge, 1 with 2 edges, and 1 with 3 edges (C_3 itself), so a(3) = 3 + 2 + 1 + 1 = 7. - John P. McSorley, Nov 21 2016
a(n) is also the number of partitions of 2n with all parts either even or equal to 1. Proof: the number of such partitions of 2n with exactly 2k 1's is p(n-k), for k = 0,..,n. Summing over k gives the formula. - Leonard Chastkofsky, Jul 24 2018
a(n) is the total number of polygamma functions that appear in the expansion of the (n+1)st derivative of x! with respect to x. More specifically, a(n) is the number of times the string "PolyGamma" appears in the expansion of D[x!, {x, n + 1}] in Mathematica. For example, D[x!, {x, 3 + 1}] = Gamma[1 + x] PolyGamma[0, 1 + x]^4 + 6 Gamma[1 + x] PolyGamma[0, 1 + x]^2 PolyGamma[1, 1 + x] + 3 Gamma[1 + x] PolyGamma[1, 1 + x]^2 + 4 Gamma[1 + x] PolyGamma[0, 1 + x] PolyGamma[2, 1 + x] + Gamma[1 + x] PolyGamma[3, 1 + x], and we see that the string "PolyGamma" appears a total of a(3) = 7 times in this expansion. - John M. Campbell, Aug 11 2018
With offset 1, also the number of integer partitions of 2n that do not comprise the multiset of vertex-degrees of any multigraph (i.e., non-multigraphical partitions); see A209816 for multigraphical partitions. - Gus Wiseman, Oct 26 2018
Also a(n) is the number of partitions of 2n+1 with exactly one odd part.
Delete the odd part 2k+1, k=0, ..., n, to get a partition of 2n-2k into even parts. There are as many unrestricted partitions of n-k; now sum those numbers from 0 to n to get a(n). - George Beck, Jul 22 2019
In the Young's lattice, a(n) is the number of branches that connect the (n-1)-th layer to the n-th layer. - Shouvik Datta, Sep 19 2021
a(n) is the number of multiset partitions of the multiset {r^n, s^1}, equivalently, factorization patterns of any number m=p^n*q^1 where p and q are primes. - Joerg Arndt, Jan 01 2024
a(n) is the number of positive integers whose divisors are the parts of the partitions of n + 1. - Omar E. Pol, Nov 07 2024

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
.                         Number
Partitions of 6           of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 =                     19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
  (2)  (4)   (6)    (8)     (A)      (C)
       (31)  (42)   (53)    (64)     (75)
             (51)   (62)    (73)     (84)
             (411)  (71)    (82)     (93)
                    (521)   (91)     (A2)
                    (611)   (622)    (B1)
                    (5111)  (631)    (732)
                            (721)    (741)
                            (811)    (822)
                            (6211)   (831)
                            (7111)   (921)
                            (61111)  (A11)
                                     (7221)
                                     (7311)
                                     (8211)
                                     (9111)
                                     (72111)
                                     (81111)
                                     (711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
  (11)  (211)   (2211)    (22211)     (222211)      (2222211)
        (1111)  (3111)    (32111)     (322111)      (3222111)
                (21111)   (41111)     (331111)      (3321111)
                (111111)  (221111)    (421111)      (4221111)
                          (311111)    (511111)      (4311111)
                          (2111111)   (2221111)     (5211111)
                          (11111111)  (3211111)     (6111111)
                                      (4111111)     (22221111)
                                      (22111111)    (32211111)
                                      (31111111)    (33111111)
                                      (211111111)   (42111111)
                                      (1111111111)  (51111111)
                                                    (222111111)
                                                    (321111111)
                                                    (411111111)
                                                    (2211111111)
                                                    (3111111111)
                                                    (21111111111)
                                                    (111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
   1:  {{1, 1, 1, 1, 1, 2}}
   2:  {{1, 1, 1, 1, 1}, {2}}
   3:  {{1, 1, 1, 1, 2}, {1}}
   4:  {{1, 1, 1, 1}, {1, 2}}
   5:  {{1, 1, 1, 1}, {1}, {2}}
   6:  {{1, 1, 1, 2}, {1, 1}}
   7:  {{1, 1, 1, 2}, {1}, {1}}
   8:  {{1, 1, 1}, {1, 1, 2}}
   9:  {{1, 1, 1}, {1, 1}, {2}}
  10:  {{1, 1, 1}, {1, 2}, {1}}
  11:  {{1, 1, 1}, {1}, {1}, {2}}
  12:  {{1, 1, 2}, {1, 1}, {1}}
  13:  {{1, 1, 2}, {1}, {1}, {1}}
  14:  {{1, 1}, {1, 1}, {1, 2}}
  15:  {{1, 1}, {1, 1}, {1}, {2}}
  16:  {{1, 1}, {1, 2}, {1}, {1}}
  17:  {{1, 1}, {1}, {1}, {1}, {2}}
  18:  {{1, 2}, {1}, {1}, {1}, {1}}
  19:  {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
		

References

  • H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.

Crossrefs

A diagonal of A066633.
Also second column of A126442. - George Beck, May 07 2011
Row sums of triangle A092905.
Also row sums of triangle A261555. - Omar E. Pol, Sep 14 2016
Also row sums of triangle A278427. - John P. McSorley, Nov 25 2016
Column k=2 of A292508.

Programs

  • GAP
    List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
    
  • Haskell
    a000070 = p a028310_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Maple
    with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
    Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
    Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
    a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
    Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
    
  • PARI
    x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
    
  • PARI
    a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
    
  • Python
    from itertools import accumulate
    def A000070iter(n):
        L = [0]*n; L[0] = 1
        def numpart(n):
            S = 0; J = n-1; k = 2
            while 0 <= J:
                T = L[J]
                S = S+T if (k//2)%2 else S-T
                J -= k  if (k)%2 else k//2
                k += 1
            return S
        for j in range(1, n): L[j] = numpart(j)
        return accumulate(L)
    print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
    
  • Python
    # Using function A365676Row. Compare also A365675.
    from itertools import accumulate
    def A000070List(size: int) -> list[int]:
        return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
    print(A000070List(45))  # Peter Luschny, Sep 16 2023
  • Sage
    def A000070_list(leng):
        p = [number_of_partitions(n) for n in range(leng)]
        return [add(p[:k+1]) for k in range(leng)]
    A000070_list(45) # Peter Luschny, Sep 15 2014
    

Formula

Euler transform of [ 2, 1, 1, 1, 1, 1, 1, ...].
log(a(n)) ~ -3.3959 + 2.44613*sqrt(n). - Robert G. Wilson v, Jan 11 2002
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)+1)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
G.f.: (1/(1 - x))*Product_{m >= 1} 1/(1 - x^m).
a(n) seems to have the same parity as A027349(n+1). Comment from James Sellers, Mar 08 2006: that is true.
a(n) = A000041(2n+1) - A110618(2n+1) = A000041(2n+2) - A110618(2n+2). - Henry Bottomley, Aug 01 2005
Row sums of triangle A133735. - Gary W. Adamson, Sep 22 2007
a(n) = A092269(n+1) - A195820(n+1). - Omar E. Pol, Oct 20 2011
a(n) = A181187(n+1,1) - A181187(n+1,2). - Omar E. Pol, Oct 25 2012
From Peter Bala, Dec 23 2013: (Start)
Gupta gives the asymptotic result a(n-1) ~ sqrt(6/Pi^2)* sqrt(n)*p(n), where p(n) is the partition function A000041(n).
Let P(2,n) denote the set of partitions of n into parts k >= 2.
a(n-2) = Sum_{parts k in all partitions in P(2,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, leads to the asymptotic result
a(n-2) ~ (6/Pi^2)*n*(p(n) - p(n-1)) = (6/Pi^2)*A138880(n) as n -> infinity. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n)) + (73*Pi^2 - 1584)/(6912*n)). - Vaclav Kotesovec, Oct 26 2016
a(n) = A024786(n+2) + A024786(n+1). - Vaclav Kotesovec, Nov 05 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(n) = A025065(2n). - Gus Wiseman, Oct 26 2018
a(n - 1) = A000041(2n) - A209816(n). - Gus Wiseman, Oct 26 2018

A002865 Number of partitions of n that do not contain 1 as a part.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701
Offset: 0

Views

Author

Keywords

Comments

Also the number of partitions of n-1, n >= 2, such that the least part occurs exactly once. See A096373, A097091, A097092, A097093. - Robert G. Wilson v, Jul 24 2004 [Corrected by Wolfdieter Lang, Feb 18 2009]
Number of partitions of n+1 where the number of parts is itself a part. Take a partition of n (with k parts) which does not contain 1, remove 1 from each part and add a new part of size k+1. - Franklin T. Adams-Watters, May 01 2006
Number of partitions where the largest part occurs at least twice. - Joerg Arndt, Apr 17 2011
Row sums of triangle A147768. - Gary W. Adamson, Nov 11 2008
From Lewis Mammel (l_mammel(AT)att.net), Oct 06 2009: (Start)
a(n) is the number of sets of n disjoint pairs of 2n things, called a pairing, disjoint with a given pairing (A053871), that are unique under permutations preserving the given pairing.
Can be seen immediately from a graphical representation which must decompose into even numbered cycles of 4 or more things, as connected by pairs alternating between the pairings. Each thing is in a single cycle, so this is a partition of 2n into even parts greater than 2, equivalent to a partition of n into parts greater than 1. (End)
Convolution product (1, 1, 2, 2, 4, 4, ...) * (1, 2, 3, ...) = A058682 starting (1, 3, 7, 13, 23, 37, ...); with row sums of triangle A171239 = A058682. - Gary W. Adamson, Dec 05 2009
Also the number of 2-regular multigraphs with loops forbidden. - Jason Kimberley, Jan 05 2011
Number of appearances of the multiplicity n, n-1, ..., n-k in all partitions of n, for k < n/2. (Only populated by multiplicities of large numbers of 1's.) - William Keith, Nov 20 2011
Also the number of equivalence classes of n X n binary matrices with exactly 2 1's in each row and column, up to permutations of rows and columns (cf. A133687). - N. J. A. Sloane, Sep 16 2013
Starting at a(2) this sequence gives the number of vertices on a nim tree created in the game of edge removal for a path P_{n} where n is the number of vertices on the path. This is the number of nonisomorphic graphs that can result from the path when the game of edge removal is played. - Lyndsey Wong, Jul 09 2016
The number of different ways to climb a staircase taking at least two stairs at a time. - Mohammad K. Azarian, Nov 20 2016
Let 1,0,1,1,1,... (offset 0) count unlabeled, connected, loopless 1-regular digraphs. This here is the Euler transform of that sequence, counting unlabeled loopless 1-regular digraphs. A145574 is the associated multiset transformation. A000166 are the labeled loopless 1-regular digraphs. - R. J. Mathar, Mar 25 2019
For n > 1, also the number of partitions with no part greater than the number of ones. - George Beck, May 09 2019 [See A187219 which is the correct sequence for this interpretation for n >= 1. - Spencer Miller, Jan 30 2023]
From Gus Wiseman, May 19 2019: (Start)
Conjecture: Also the number of integer partitions of n - 1 that have a consecutive subsequence summing to each positive integer from 1 to n - 1. For example, (32211) is such a partition because we have consecutive subsequences:
1: (1)
2: (2)
3: (3) or (21)
4: (22) or (211)
5: (32) or (221)
6: (2211)
7: (322)
8: (3221)
9: (32211)
(End)
There is a sufficient and necessary condition to characterize the partitions defined by Gus Wiseman. It is that the largest part must be less than or equal to the number of ones plus one. Hence, the number of partitions of n with no part greater than the number of ones is the same as the number of partitions of n-1 that have a consecutive subsequence summing to each integer from 1 to n-1. Gus Wiseman's conjecture can be proved bijectively. - Andrew Yezhou Wang, Dec 14 2019
From Peter Bala, Dec 01 2024: (Start)
Let P(2, n) denote the set of partitions of n into parts k > 1. Then A000041(n) = - Sum_{parts k in all partitions in P(2, n+2)} mu(k). For example, with n = 5, there are 4 partitions of n + 2 = 7 into parts greater than 1, namely, 7, 5 + 2, 4 + 3, 3 + 2 + 2, and mu(7) + (mu(5) + mu(2)) + (mu(4 ) + mu(3)) + (mu(3) + mu(2) + mu(2)) = -7 = - A000041(5). (End)

Examples

			a(6) = 4 from 6 = 4+2 = 3+3 = 2+2+2.
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 7*x^8 + 8*x^9 + ...
From _Gus Wiseman_, May 19 2019: (Start)
The a(2) = 1 through a(9) = 8 partitions not containing 1 are the following. The Heinz numbers of these partitions are given by A005408.
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (22)  (32)  (33)   (43)   (44)    (54)
                        (42)   (52)   (53)    (63)
                        (222)  (322)  (62)    (72)
                                      (332)   (333)
                                      (422)   (432)
                                      (2222)  (522)
                                              (3222)
The a(2) = 1 through a(9) = 8 partitions of n - 1 whose least part appears exactly once are the following. The Heinz numbers of these partitions are given by A247180.
  (1)  (2)  (3)   (4)   (5)    (6)    (7)     (8)
            (21)  (31)  (32)   (42)   (43)    (53)
                        (41)   (51)   (52)    (62)
                        (221)  (321)  (61)    (71)
                                      (331)   (332)
                                      (421)   (431)
                                      (2221)  (521)
                                              (3221)
The a(2) = 1 through a(9) = 8 partitions of n + 1 where the number of parts is itself a part are the following. The Heinz numbers of these partitions are given by A325761.
  (21)  (22)  (32)   (42)   (52)    (62)    (72)     (82)
              (311)  (321)  (322)   (332)   (333)    (433)
                            (331)   (431)   (432)    (532)
                            (4111)  (4211)  (531)    (631)
                                            (4221)   (4222)
                                            (4311)   (4321)
                                            (51111)  (4411)
                                                     (52111)
The a(2) = 1 through a(8) = 7 partitions of n whose greatest part appears at least twice are the following. The Heinz numbers of these partitions are given by A070003.
  (11)  (111)  (22)    (221)    (33)      (331)      (44)
               (1111)  (11111)  (222)     (2221)     (332)
                                (2211)    (22111)    (2222)
                                (111111)  (1111111)  (3311)
                                                     (22211)
                                                     (221111)
                                                     (11111111)
Nonisomorphic representatives of the a(2) = 1 through a(6) = 4 2-regular multigraphs with n edges and n vertices are the following.
  {12,12}  {12,13,23}  {12,12,34,34}  {12,12,34,35,45}  {12,12,34,34,56,56}
                       {12,13,24,34}  {12,13,24,35,45}  {12,12,34,35,46,56}
                                                        {12,13,23,45,46,56}
                                                        {12,13,24,35,46,56}
The a(2) = 1 through a(9) = 8 partitions of n with no part greater than the number of ones are the following. The Heinz numbers of these partitions are given by A325762.
  (11)  (111)  (211)   (2111)   (2211)    (22111)    (22211)     (33111)
               (1111)  (11111)  (3111)    (31111)    (32111)     (222111)
                                (21111)   (211111)   (41111)     (321111)
                                (111111)  (1111111)  (221111)    (411111)
                                                     (311111)    (2211111)
                                                     (2111111)   (3111111)
                                                     (11111111)  (21111111)
                                                                 (111111111)
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 836.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, p*(n).
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. G. Tait, Scientific Papers, Cambridge Univ. Press, Vol. 1, 1898, Vol. 2, 1900, see Vol. 1, p. 334.

Crossrefs

First differences of partition numbers A000041. Cf. A053445, A072380, A081094, A081095, A232697.
Pairwise sums seem to be in A027336.
Essentially the same as A085811.
A column of A090824 and of A133687 and of A292508 and of A292622. Cf. A229161.
2-regular not necessarily connected graphs: A008483 (simple graphs), A000041 (multigraphs with loops allowed), this sequence (multigraphs with loops forbidden), A027336 (graphs with loops allowed but no multiple edges). - Jason Kimberley, Jan 05 2011
See also A098743 (parts that do not divide n).
Numbers n such that in the edge-delete game on the path P_{n} the first player does not have a winning strategy: A274161. - Lyndsey Wong, Jul 09 2016
Row sums of characteristic array A145573.
Number of partitions of n into parts >= m: A008483 (m = 3), A008484 (m = 4), A185325 - A185329 (m = 5 through 9).

Programs

  • GAP
    Concatenation([1],List([1..41],n->NrPartitions(n)-NrPartitions(n-1))); # Muniru A Asiru, Aug 20 2018
    
  • Magma
    A41 := func; [A41(n)-A41(n-1):n in [0..50]]; // Jason Kimberley, Jan 05 2011
    
  • Maple
    with(combstruct): ZL1:=[S, {S=Set(Cycle(Z,card>1))}, unlabeled]: seq(count(ZL1,size=n), n=0..50);  # Zerinvary Lajos, Sep 24 2007
    G:= {P=Set (Set (Atom, card>1))}: combstruct[gfsolve](G, unlabeled, x): seq  (combstruct[count] ([P, G, unlabeled], size=i), i=0..50);  # Zerinvary Lajos, Dec 16 2007
    with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, unlabeled]; end: A:=a(2):seq(count(A, size=n), n=0..50);  # Zerinvary Lajos, Jun 11 2008
    # alternative Maple program:
    A002865:= proc(n) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)-1)*A002865(n-j), j=1..n)/n)
        end:
    seq(A002865(n), n=0..60);  # Alois P. Heinz, Sep 17 2017
  • Mathematica
    Table[ PartitionsP[n + 1] - PartitionsP[n], {n, -1, 50}] (* Robert G. Wilson v, Jul 24 2004 *)
    f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 2], {n, 50}] (* Robert G. Wilson v *)
    Table[SeriesCoefficient[Exp[Sum[x^(2*k)/(k*(1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Aug 18 2018 *)
    CoefficientList[Series[1/QPochhammer[x^2, x], {x,0,50}], x] (* G. C. Greubel, Nov 03 2019 *)
    Table[Count[IntegerPartitions[n],?(FreeQ[#,1]&)],{n,0,50}] (* _Harvey P. Dale, Feb 12 2023 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - x) / eta(x + x * O(x^n)), n))};
    
  • PARI
    a(n)=if(n,numbpart(n)-numbpart(n-1),1) \\ Charles R Greathouse IV, Nov 26 2012
    
  • Python
    from sympy import npartitions
    def A002865(n): return npartitions(n)-npartitions(n-1) if n else 1 # Chai Wah Wu, Mar 30 2023
  • SageMath
    def A002865_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+2)) for m in (0..60)) ).list()
    A002865_list(50) # G. C. Greubel, Nov 03 2019
    

Formula

G.f.: Product_{m>1} 1/(1-x^m).
a(0)=1, a(n) = p(n) - p(n-1), n >= 1, with the partition numbers p(n) := A000041(n).
a(n) = A085811(n+3). - James Sellers, Dec 06 2005 [Corrected by Gionata Neri, Jun 14 2015]
a(n) = A116449(n) + A116450(n). - Reinhard Zumkeller, Feb 16 2006
a(n) = Sum_{k=2..floor((n+2)/2)} A008284(n-k+1,k-1) for n > 0. - Reinhard Zumkeller, Nov 04 2007
G.f.: 1 + Sum_{n>=2} x^n / Product_{k>=n} (1 - x^k). - Joerg Arndt, Apr 13 2011
G.f.: Sum_{n>=0} x^(2*n) / Product_{k=1..n} (1 - x^k). - Joerg Arndt, Apr 17 2011
a(n) = A090824(n,1) for n > 0. - Reinhard Zumkeller, Oct 10 2012
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n) + (217*Pi^2/6912 + 9/(2*Pi^2) + 13/8)/n). - Vaclav Kotesovec, Feb 26 2015, extended Nov 04 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(0) = 1, a(n) = A232697(n) - 1. - George Beck, May 09 2019
From Peter Bala, Feb 19 2021: (Start)
G.f.: A(q) = Sum_{n >= 0} q^(n^2)/( (1 - q)*Product_{k = 2..n} (1 - q^k)^2 ).
More generally, A(q) = Sum_{n >= 0} q^(n*(n+r))/( (1 - q) * Product_{k = 2..n} (1 - q^k)^2 * Product_{i = 1..r} (1 - q^(n+i)) ) for r = 0,1,2,.... (End)
G.f.: 1 + Sum_{n >= 1} x^(n+1)/Product_{k = 1..n-1} 1 - x^(k+2). - Peter Bala, Dec 01 2024

A014153 Expansion of 1/((1-x)^2*Product_{k>=1} (1-x^k)).

Original entry on oeis.org

1, 3, 7, 14, 26, 45, 75, 120, 187, 284, 423, 618, 890, 1263, 1771, 2455, 3370, 4582, 6179, 8266, 10980, 14486, 18994, 24757, 32095, 41391, 53123, 67865, 86325, 109350, 137979, 173450, 217270, 271233, 337506, 418662, 517795, 638565, 785350, 963320, 1178628
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n with three kinds of 1. E.g., a(2)=7 because we have 2, 1+1, 1+1', 1+1", 1'+1', 1'+1", 1"+1". - Emeric Deutsch, Mar 22 2005
Partial sums of the partial sums of the partition numbers A000041. Partial sums of A000070. Euler transform of 3,1,1,1,...
Also sum of parts, counted without multiplicity, in all partitions of n, offset 1. Also Sum phi(p), where the sum is taken over all parts p of all partitions of n, offset 1. - Vladeta Jovovic, Mar 26 2005
Equals row sums of triangle A141157. - Gary W. Adamson, Jun 12 2008
A014153 convolved with A010815 = (1, 2, 3, ...). n-th partial sum sequence of A000041 convolved with A010815 = (n-1)-th column of Pascal's triangle, starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
From Omar E. Pol, May 25 2012: (Start)
a(n) is also the sum of all parts of the (n+1)st column of a version of the section model of partitions in which every section has its parts aligned to the right margin (cf. A210953, A210970, A135010).
Rows of triangle A210952 converge to this sequence. (End)
Using the above result (see Jovovic's comment) of Jovovic and Mertens's theorem on the average order of the phi function, we can obtain the estimate a(n-1) = (6/Pi^2)*n*p(n) + O(log(n)*A006128(n)), where p(n) is the partition function A000041(n). It can be shown that A006128(n) = O(sqrt(n)*log(n)*p(n)), so we have the asymptotic result a(n) ~ (6/Pi^2)*n*p(n). - Peter Bala, Dec 23 2013
a(n-2) is the number of partitions of 2n or 2n-1 with palindromicity 2; that is, partitions that can be listed in palindromic order except for a central sequence of two distinct parts. - Gregory L. Simay, Nov 01 2015
Convolution of A000041 and A000027. - Omar E. Pol, Jun 17 2021
Convolution of A002865 and the positive terms of A000217. Partial sums give A014160. - Omar E. Pol, Mar 01 2023

Crossrefs

Cf. A010815. - Gary W. Adamson, Nov 09 2008
Column k=3 of A292508.

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x)^2*(&*[1-x^k: k in [1..50]])) )); // G. C. Greubel, Oct 15 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add((2+sigma(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 13 2012
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[(2+DivisorSigma[1, j])*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[Sum[(n-k)*PartitionsP[k],{k,0,n}],{n,1,50}] (* Vaclav Kotesovec, Jun 23 2015 *)
    t[n_, k_] := Sum[StirlingS1[n, j]* Binomial[i + j - 1, i]* PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Print@ Table[t[n, k], {k, 10}, {n, 0, k - 1}]; Table[t[2, k], {k, 3, 43}] (* George Beck, May 25 2016 *)
  • PARI
    x='x+O('x^45); Vec(1/((1-x)^2*prod(k=1,50, 1-x^k))) \\ G. C. Greubel, Oct 15 2018

Formula

Let t(n_, k_) = Sum_{i = 0..k} Sum_{j = 0..n} s(n, j)*C(i, j)*p(k - n - i), where s(n, j) are Stirling numbers of the first kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function. Then a(k) = t(2, k+2) (conjectured). The formula for t(n, k) is the same as at A126442 except that there the Stirling numbers are of the second kind. - George Beck, May 21 2016
a(n) = (n+1)*A000070(n+1) - A182738(n+1). - Vaclav Kotesovec, Nov 04 2016
a(n) ~ exp(sqrt(2*n/3)*Pi)*sqrt(3)/(2*Pi^2) * (1 + 23*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 04 2016

A346426 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 4, 3, 15, 15, 11, 7, 5, 52, 52, 36, 21, 12, 7, 203, 203, 135, 74, 38, 19, 11, 877, 877, 566, 296, 141, 64, 30, 15, 4140, 4140, 2610, 1315, 592, 250, 105, 45, 22, 21147, 21147, 13082, 6393, 2752, 1098, 426, 165, 67, 30, 115975, 115975, 70631, 33645, 13960, 5317, 1940, 696, 254, 97, 42
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2021

Keywords

Comments

Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1); A(3,1) = 7: 2*2*2*3, 2*3*4, 4*6, 2*2*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30.

Examples

			A(2,2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
Square array A(n,k) begins:
   1,  1,   2,    5,   15,    52,    203,     877,    4140, ...
   1,  2,   5,   15,   52,   203,    877,    4140,   21147, ...
   2,  4,  11,   36,  135,   566,   2610,   13082,   70631, ...
   3,  7,  21,   74,  296,  1315,   6393,   33645,  190085, ...
   5, 12,  38,  141,  592,  2752,  13960,   76464,  448603, ...
   7, 19,  64,  250, 1098,  5317,  28009,  158926,  963913, ...
  11, 30, 105,  426, 1940,  9722,  52902,  309546, 1933171, ...
  15, 45, 165,  696, 3281, 16972,  95129,  572402, 3670878, ...
  22, 67, 254, 1106, 5372, 28582, 164528, 1015356, 6670707, ...
  ...
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= proc(n, k) option remember; coeff(s(n), x, k) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
          combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
        end:
    A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    s[n_] := s[n] = Expand[If[n == 0, 1, x Sum[s[n - j] Binomial[n - 1, j - 1], {j, 1, n}]]];
    S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
    A[n_, k_] := Sum[S[k, j] b[n, j], {j, 0, k}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz *)

Formula

A(n,k) = A001055(A000079(n)*A070826(k+1)).
A(n,k) = Sum_{j=0..k} A048993(k,j)*A292508(n,j+1).
A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000041(n-i).

A292622 Number A(n,k) of partitions of n with up to k distinct kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 4, 4, 3, 3, 2, 1, 5, 7, 5, 5, 4, 4, 1, 6, 11, 9, 8, 7, 6, 4, 1, 7, 16, 16, 13, 12, 10, 8, 7, 1, 8, 22, 27, 22, 20, 17, 14, 11, 8, 1, 9, 29, 43, 38, 33, 29, 24, 19, 15, 12, 1, 10, 37, 65, 65, 55, 49, 41, 33, 26, 20, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2017

Keywords

Comments

For fixed k>=0, A(n,k) ~ Pi * 2^(k - 5/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018

Examples

			A(3,4) =  9: 3, 21a, 21b, 21c, 21d, 1a1b1c, 1a1b1d, 1a1c1d, 1b1c1d.
A(4,3) =  8: 4, 31a, 31b, 31c, 22, 21a1b, 21a1c, 21b1c.
A(4,4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,   1,   1,   1, ...
  0,  1,  2,  3,  4,  5,   6,   7,   8, ...
  1,  1,  2,  4,  7, 11,  16,  22,  29, ...
  1,  2,  3,  5,  9, 16,  27,  43,  65, ...
  2,  3,  5,  8, 13, 22,  38,  65, 108, ...
  2,  4,  7, 12, 20, 33,  55,  93, 158, ...
  4,  6, 10, 17, 29, 49,  82, 137, 230, ...
  4,  8, 14, 24, 41, 70, 119, 201, 338, ...
  7, 11, 19, 33, 57, 98, 168, 287, 488, ...
		

Crossrefs

Rows n=0-4 give: A000012, A001477, A000124(k-1) for k>0, A011826 for k>0.
Main diagonal gives A292507.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1,
          binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)

Formula

G.f. of column k: (1 + x)^k * Product_{j>=2} 1 / (1 - x^j). - Ilya Gutkovskiy, Apr 24 2021

A292745 Number A(n,k) of partitions of n with k sorts of part 1 which are introduced in ascending order; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 3, 6, 5, 2, 1, 1, 3, 7, 13, 7, 4, 1, 1, 3, 7, 19, 26, 11, 4, 1, 1, 3, 7, 20, 52, 54, 15, 7, 1, 1, 3, 7, 20, 62, 151, 108, 22, 8, 1, 1, 3, 7, 20, 63, 217, 442, 219, 30, 12, 1, 1, 3, 7, 20, 63, 232, 803, 1314, 439, 42, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2017

Keywords

Examples

			A(3,2) = 6: 3, 21a, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,    1,    1,    1,    1,    1, ...
  0,  1,   1,    1,    1,    1,    1,    1,    1, ...
  1,  2,   3,    3,    3,    3,    3,    3,    3, ...
  1,  3,   6,    7,    7,    7,    7,    7,    7, ...
  2,  5,  13,   19,   20,   20,   20,   20,   20, ...
  2,  7,  26,   52,   62,   63,   63,   63,   63, ...
  4, 11,  54,  151,  217,  232,  233,  233,  233, ...
  4, 15, 108,  442,  803,  944,  965,  966,  966, ...
  7, 22, 219, 1314, 3092, 4158, 4425, 4453, 4454, ...
		

Crossrefs

Main diagonal gives A292503.

Programs

  • Maple
    f:= (n, k)-> add(Stirling2(n, j), j=0..k):
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          f(n, k), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

A(n,k) = Sum_{j=0..k} A292746(n,j).
A(n,k) = A(n,n) for all k >= n.

A292463 Number of partitions of n with n kinds of 1.

Original entry on oeis.org

1, 1, 4, 14, 51, 188, 702, 2644, 10026, 38223, 146359, 562456, 2168134, 8379539, 32459199, 125984039, 489837300, 1907490728, 7438346255, 29042470132, 113522618066, 444199913556, 1739735079466, 6819657196928, 26753893533257, 105034060120469, 412637434996367
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2017

Keywords

Examples

			a(2) = 4: 2, 1a1a, 1a1b, 1b1b.
		

Crossrefs

Main diagonal of A292508.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..30);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)+k-1)*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
    # third Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=1,
          combinat[numbpart](n), b(n-1, k) +b(n, k-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^(n-1) * Product[1/(1-x^k), {k,1,n}], {x,0,n}], {n,0,30}] (* Vaclav Kotesovec, Sep 19 2017 *)

Formula

a(n) = [x^n] 1/(1-x)^n * 1/Product_{j=2..n} (1-x^j).
a(n) is n-th term of the Euler transform of n,1,1,1,... .
a(n) ~ c * 4^n / sqrt(n), where c = QPochhammer[-1, 1/2] / (8*sqrt(Pi) * QPochhammer[1/4, 1/4]) = 0.48841139329043831428669851139824427133317... - Vaclav Kotesovec, Sep 19 2017
Equivalently, c = 1/(4*sqrt(Pi)*QPochhammer(1/2)). - Vaclav Kotesovec, Mar 17 2024

A292741 Number A(n,k) of partitions of n with k sorts of part 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 2, 1, 4, 10, 11, 5, 2, 1, 5, 17, 31, 24, 7, 4, 1, 6, 26, 69, 95, 50, 11, 4, 1, 7, 37, 131, 278, 287, 104, 15, 7, 1, 8, 50, 223, 657, 1114, 865, 212, 22, 8, 1, 9, 65, 351, 1340, 3287, 4460, 2599, 431, 30, 12, 1, 10, 82, 521, 2459, 8042, 16439, 17844, 7804, 870, 42, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2017

Keywords

Examples

			A(1,3) = 3: 1a, 1b, 1c.
A(2,3) = 10: 2, 1a1a, 1a1b, 1a1c, 1b1a, 1b1b, 1b1c, 1c1a, 1c1b, 1c1c.
A(3,2) = 11: 3, 21a, 21b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,     1,     1,      1,      1, ...
  0,  1,   2,    3,     4,     5,      6,      7, ...
  1,  2,   5,   10,    17,    26,     37,     50, ...
  1,  3,  11,   31,    69,   131,    223,    351, ...
  2,  5,  24,   95,   278,   657,   1340,   2459, ...
  2,  7,  50,  287,  1114,  3287,   8042,  17215, ...
  4, 11, 104,  865,  4460, 16439,  48256, 120509, ...
  4, 15, 212, 2599, 17844, 82199, 289540, 843567, ...
		

Crossrefs

Columns k=0-2 give: A002865, A000041, A090764.
Rows n=0-2 give: A000012, A001477, A002522, A071568.
Main diagonal gives A292462.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2, k^n,
          add(b(n-i*j, i-1, k), j=0..iquo(n, i)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[0, , ] = 1; b[n_, i_, k_] := b[n, i, k] = If[i < 2, k^n, Sum[b[n - i*j, i - 1, k], {j, 0, Quotient[n, i]}]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, translated from Maple *)

Formula

G.f. of column k: 1/(1-k*x) * 1/Product_{j>=2} (1-x^j).
A(n,k) = Sum_{j=0..n} A002865(j) * k^(n-j).

A014160 Apply partial sum operator thrice to partition numbers.

Original entry on oeis.org

1, 4, 11, 25, 51, 96, 171, 291, 478, 762, 1185, 1803, 2693, 3956, 5727, 8182, 11552, 16134, 22313, 30579, 41559, 56045, 75039, 99796, 131891, 173282, 226405, 294270, 380595, 489945, 627924, 801374, 1018644
Offset: 0

Views

Author

Keywords

Comments

A014160 convolved with A010815 = A000217, the triangular numbers. - Gary W. Adamson, Nov 09 2008
Unordered partitions of n into parts where the part 1 comes in 4 colors. - Peter Bala, Dec 23 2013
From Omar E. Pol, Mar 01 2023: (Start)
Partial sums of A014153.
Convolution of A000070 and A000027.
Convolution of A000041 and the positive terms of A000217.
Convolution of A002865 and the positive terms of A000292. (End)

Crossrefs

Cf. A010815, A000217. - Gary W. Adamson, Nov 09 2008
Column k=4 of A292508.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/((1-x)^3 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

From Peter Bala, Dec 23 2013: (Start)
O.g.f.: 1/(1 - x)^3 * Product_{k >= 1} 1/(1 - x^k).
a(n-1) + a(n-2) = Sum_{parts k in all partitions of n} J_2(k), where J_2(n) is the Jordan totient function A007434(n). (End)
a(n) ~ 3*sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2)*Pi^3). - Vaclav Kotesovec, Oct 30 2015
a(n) = Sum_{k=0..n} A014153(k). - Sean A. Irvine, Oct 14 2018

A292613 a(n) = [x^n] 1/(1-x)^n * Product_{k=1..n} 1/(1-x^k).

Original entry on oeis.org

1, 2, 7, 25, 92, 343, 1292, 4902, 18703, 71677, 275694, 1063636, 4114131, 15948762, 61946290, 241013869, 939125870, 3664299332, 14314777054, 55982787136, 219158088711, 858728875776, 3367576480747, 13216392846128, 51905939548950, 203989227456894, 802164259099114
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2017

Keywords

Comments

Number of ways to pick n units in all partitions of 2n - Olivier Gérard, May 07 2020

Examples

			Illustration of comment for n=3, a(3)=25 :
Among the 11 integer partitions of 6, 3 have at least 3 ones.
3,1,1,1  ;  2,1,1,1,1;  1,1,1,1,1,1;
There are respectively 1, 4 and 20 ways to pick 3 of these.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^n*Product[1/(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]

Formula

a(n) ~ c * 4^n / sqrt(Pi*n), where c = 1/(2*QPochhammer[1/2, 1/2]) = 1.7313733097275318057689... - Vaclav Kotesovec, Sep 20 2017
a(n) = A292508(n,n+1). - Alois P. Heinz, Jul 16 2021
Showing 1-10 of 19 results. Next