cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A010815 From Euler's Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

When convolved with the partition numbers A000041 gives 1, 0, 0, 0, 0, ...
Also, number of different partitions of n into parts of -1 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
The comment that "when convolved with the partition numbers gives [1, 0, 0, 0, ...]" is equivalent to row sums of triangle A145975 = [1, 0, 0, 0, ...]; where A145975 is a partition number convolution triangle. - Gary W. Adamson, Oct 25 2008
When convolved with n-th partial sums of A000041 = the binomial sequence starting (1, n, ...). Example: A010815 convolved with A014160 (partial sum operation applied thrice to the partition numbers) = (1, 3, 6, 10, ...). - Gary W. Adamson, Nov 11 2008
(A000012^(-n) * A000041) convolved with A010815 = n-th row of the inverse of Pascal's triangle, (as a vector, followed by zeros); where A000012^(-1) = the pairwise difference operator. Example: (A000012^(-4) * A000041) convolved with A010815 = (1, -4, 6, -4, 1, 0, 0, 0, ...). - Gary W. Adamson, Nov 11 2008
Also sum of [product of (1-2/(hook lengths)^2)] over all partitions of n. - Wouter Meeussen, Sep 16 2010
Cayley (1895) begins article 387 with "Write for shortness sqrt(2k'K / pi) / [1-q^{2m-1}]^2 = G, ..." which is a convoluted way of writing G = [1-q^{2m}] = (1-q^2)(1-q^4)... - Michael Somos, Aug 01 2011
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^3, b = x. - Michael Somos, Jan 21 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 1 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 - x^35 - x^40 + ...
G.f. = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + q^529 + q^625 + ...
From _Seiichi Manyama_, Mar 04 2017: (Start)
G.f.
= 1 + (-x - 3*x^2/2 - 4*x^3/3 -  7*x^4/4  -  6*x^5/5 - ...)
     + 1/2 * (x^2   + 3*x^3   + 59*x^4/12 + 15*x^5/2 + ...)
              + 1/6 * (-x^3   -  9*x^4/2  - 43*x^5/4 - ...)
                         + 1/24 * (x^4    +  6*x^5   + ...)
                                   + 1/120 * (-x^5   - ...)
                                             + ...
= 1 - x - x^2 + x^5 + .... (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. See page 3.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.
  • A. Cayley, An Elementary Treatise on Elliptic Functions, G. Bell and Sons, London, 1895, p. 295, Art. 387.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5g].
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.12) and (32.13).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 353.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.
  • A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A010815List(len) = DedekindEta(len, 1)
    A010815List(93) |> println # Peter Luschny, Mar 09 2018
    
  • Julia
    function A010815(n)
        r = 24 * n + 1
        m = isqrt(r)
        m * m != r && return 0
        iseven(div(m + m % 6, 6)) ? 1 : -1
    end # Peter Luschny, Sep 09 2021
  • Magma
    Coefficients(&*[1-x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Jan 15 2017
    
  • Maple
    A010815 := mul((1-x^m), m=1..100);
    A010815 := proc(n) local x,m;
        product(1-x^m,m=1..n) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
    A010815 := proc(n) 24*n + 1; if issqr(%) then sqrt(%);
    (-1)^irem(iquo(% + irem(%, 6), 6), 2) else 0 fi end: # Peter Luschny, Oct 02 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> -x^(1/2)}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
    CoefficientList[ Series[ Product[(1 - x^k), {k, 1, 70}], {x, 0, 70}], x]
    (* hooklength[ ] cfr A047874 *) Table[ Tr[ ( Times@@(1-2/Flatten[hooklength[ # ]]^2) )&/@ Partitions[n] ],{n,26}] (* Wouter Meeussen, Sep 16 2010 *)
    CoefficientList[ Series[ QPochhammer[q], {q, 0, 100}], q] (* Jean-François Alcover, Dec 04 2013 *)
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ[m], KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Jun 04 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, May 04 2018 *)
    Table[m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0], {k, 0, 100}] (* Vaclav Kotesovec, Jul 09 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n)), n))}; /* Michael Somos, Jun 05 2002 */
    
  • PARI
    {a(n) = polcoeff( prod( k=1, n, 1 - x^k, 1 + x * O(x^n)), n)}; /* Michael Somos, Nov 19 2011 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), if( (n%2) && (n%3), (-1)^round( n/6 )))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x^n); polcoeff( sum( k=1, (sqrtint( 8*n + 1)-1) \ 2, A *= x^k / (x^k - 1) + x * O(x^(n - (k^2-k)/2)), 1), n))}; /* Michael Somos, Aug 18 2006 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q))} \\ Altug Alkan, Mar 21 2018
    
  • Python
    from math import isqrt
    def A010815(n):
        m = isqrt(24*n+1)
        return 0 if m**2 != 24*n+1 else ((-1)**((m-1)//6) if m % 6 == 1 else (-1)**((m+1)//6)) # Chai Wah Wu, Sep 08 2021
    

Formula

a(n) = (-1)^m if n is of the form m(3m+-1)/2; otherwise a(n)=0. The values of n such that |a(n)|=1 are the generalized pentagonal numbers, A001318. The values of n such that a(n)=0 is A090864.
Expansion of the Dedekind eta function without the q^(1/24) factor in powers of q.
Euler transform of period 1 sequence [ -1, -1, -1, ...].
G.f.: (q; q){oo} = Product{k >= 1} (1-q^k) = Sum_{n=-oo..oo} (-1)^n*q^(n*(3n+1)/2). The first notation is a q-Pochhammer symbol.
Expansion of f(-x) := f(-x, -x^2) in powers of x. A special case of Ramanujan's general theta function; see Berndt reference. - Michael Somos, Apr 08 2003
a(n) = A067661(n) - A067659(n). - Jon Perry, Jun 17 2003
Expansion of f(x^5, x^7) - x * f(x, x^11) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 21 2012
G.f.: q^(-1/24) * eta(t), where q = exp(2 Pi i t) and eta is the Dedekind eta function.
G.f.: 1 - x - x^2(1-x) - x^3(1-x)(1-x^2) - ... - Jon Perry, Aug 07 2004
Given g.f. A(x), then B(q) = q * A(q^3)^8 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - v^3 + 16*u*w^2. - Michael Somos, May 02 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(x^q), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^9*u3*u6^3 - u2^9*u3^4 + 9*u1^4*u2*u6^8. - Michael Somos, May 02 2005
a(n) = b(24*n + 1) where b() is multiplicative with b(p^2e) = (-1)^e if p == 5 or 7 (mod 12), b(p^2e) = +1 if p == 1 or 11 (mod 12) and b(p^(2e-1)) = b(2^e) = b(3^e) = 0 if e>0. - Michael Somos, May 08 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^16*w^8 - v^24 + 16*u^8*w^16. - Michael Somos, May 08 2005
a(n) = (-1)^n * A121373(n). a(25*n + 1) = -a(n). a(5*n + 3) = a(5*n + 4) = 0. a(5*n) = A113681(n). a(5*n + 2) = - A116915(n). - Michael Somos, Feb 26 2006
G.f.: 1 + Sum_{k>0} (-1)^k * x^((k^2 + k) / 2) / ((1 - x) * (1 - x^2) * ... * (1 - x^k)). - Michael Somos, Aug 18 2006
a(n) = -(1/n)*Sum_{k=1..n} sigma(k)*a(n-k). - Vladeta Jovovic, Aug 28 2002
G.f.: A(x) = 1 - x/G(0); G(k) = 1 + x - x^(k+1) - x*(1-x^(k+1))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2012
Expansion of f(-x^2) * chi(-x) = psi(-x) * chi(-x^2) = psi(x) * chi(-x)^2 = f(-x^2)^2 / psi(x) = phi(-x) / chi(-x) = phi(-x^2) / chi(x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Nov 16 2015
G.f.: exp( Sum_{n>=1} -sigma(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
G.f.: Sum_{n >= 0} x^(n*(2*n-1))*(2*x^(2*n) - 1)/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 02 2021
The g.f. A(x) satisfies A(x^2) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k >= n+1} 1 - x^k = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + + - - .... - Peter Bala, Feb 12 2021
For m >= 0, A(x) = (1 - x)*(1 - x^2)*...*(1 - x^m) * Sum_{n >= 0} (-1)^n * x^(n*(n+2*m+1)/2) /(Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025
From Friedjof Tellkamp, Mar 19 2025: (Start)
Sum_{n>=1} a(n)/n = 6 - 4*Pi/sqrt(3).
Sum_{n>=1} a(n)/n^2 = -108 + 16*sqrt(3)*Pi + 2*Pi^2.
Sum_{n>=1} a(n)/n^k = Sum_{i=0..k} 6^(k-i)*C(-k, k-i)*A(i), where A(i)=(2^i-2)*(3^i-3)*zeta(i) for even i, and A(i)=-G(i/2-1/2)*(2^i+2)*(2*Pi)^i/(sqrt(3)*Gamma(i+1)) for odd i, with G(n>0) as the Glaisher's numbers (A002111) and G(0)=1/2. (End)

Extensions

Additional comments from Michael Somos, Jun 05 2002

A014153 Expansion of 1/((1-x)^2*Product_{k>=1} (1-x^k)).

Original entry on oeis.org

1, 3, 7, 14, 26, 45, 75, 120, 187, 284, 423, 618, 890, 1263, 1771, 2455, 3370, 4582, 6179, 8266, 10980, 14486, 18994, 24757, 32095, 41391, 53123, 67865, 86325, 109350, 137979, 173450, 217270, 271233, 337506, 418662, 517795, 638565, 785350, 963320, 1178628
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n with three kinds of 1. E.g., a(2)=7 because we have 2, 1+1, 1+1', 1+1", 1'+1', 1'+1", 1"+1". - Emeric Deutsch, Mar 22 2005
Partial sums of the partial sums of the partition numbers A000041. Partial sums of A000070. Euler transform of 3,1,1,1,...
Also sum of parts, counted without multiplicity, in all partitions of n, offset 1. Also Sum phi(p), where the sum is taken over all parts p of all partitions of n, offset 1. - Vladeta Jovovic, Mar 26 2005
Equals row sums of triangle A141157. - Gary W. Adamson, Jun 12 2008
A014153 convolved with A010815 = (1, 2, 3, ...). n-th partial sum sequence of A000041 convolved with A010815 = (n-1)-th column of Pascal's triangle, starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
From Omar E. Pol, May 25 2012: (Start)
a(n) is also the sum of all parts of the (n+1)st column of a version of the section model of partitions in which every section has its parts aligned to the right margin (cf. A210953, A210970, A135010).
Rows of triangle A210952 converge to this sequence. (End)
Using the above result (see Jovovic's comment) of Jovovic and Mertens's theorem on the average order of the phi function, we can obtain the estimate a(n-1) = (6/Pi^2)*n*p(n) + O(log(n)*A006128(n)), where p(n) is the partition function A000041(n). It can be shown that A006128(n) = O(sqrt(n)*log(n)*p(n)), so we have the asymptotic result a(n) ~ (6/Pi^2)*n*p(n). - Peter Bala, Dec 23 2013
a(n-2) is the number of partitions of 2n or 2n-1 with palindromicity 2; that is, partitions that can be listed in palindromic order except for a central sequence of two distinct parts. - Gregory L. Simay, Nov 01 2015
Convolution of A000041 and A000027. - Omar E. Pol, Jun 17 2021
Convolution of A002865 and the positive terms of A000217. Partial sums give A014160. - Omar E. Pol, Mar 01 2023

Crossrefs

Cf. A010815. - Gary W. Adamson, Nov 09 2008
Column k=3 of A292508.

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x)^2*(&*[1-x^k: k in [1..50]])) )); // G. C. Greubel, Oct 15 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add((2+sigma(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 13 2012
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[(2+DivisorSigma[1, j])*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[Sum[(n-k)*PartitionsP[k],{k,0,n}],{n,1,50}] (* Vaclav Kotesovec, Jun 23 2015 *)
    t[n_, k_] := Sum[StirlingS1[n, j]* Binomial[i + j - 1, i]* PartitionsP[k - n - i], {j, 0, n}, {i, 0, k - n}]; Print@ Table[t[n, k], {k, 10}, {n, 0, k - 1}]; Table[t[2, k], {k, 3, 43}] (* George Beck, May 25 2016 *)
  • PARI
    x='x+O('x^45); Vec(1/((1-x)^2*prod(k=1,50, 1-x^k))) \\ G. C. Greubel, Oct 15 2018

Formula

Let t(n_, k_) = Sum_{i = 0..k} Sum_{j = 0..n} s(n, j)*C(i, j)*p(k - n - i), where s(n, j) are Stirling numbers of the first kind, C(i, j) are the number of compositions of i distinct objects into j parts, and p is the integer partition function. Then a(k) = t(2, k+2) (conjectured). The formula for t(n, k) is the same as at A126442 except that there the Stirling numbers are of the second kind. - George Beck, May 21 2016
a(n) = (n+1)*A000070(n+1) - A182738(n+1). - Vaclav Kotesovec, Nov 04 2016
a(n) ~ exp(sqrt(2*n/3)*Pi)*sqrt(3)/(2*Pi^2) * (1 + 23*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 04 2016

A292508 Number A(n,k) of partitions of n with k kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 2, 1, 4, 7, 7, 5, 2, 1, 5, 11, 14, 12, 7, 4, 1, 6, 16, 25, 26, 19, 11, 4, 1, 7, 22, 41, 51, 45, 30, 15, 7, 1, 8, 29, 63, 92, 96, 75, 45, 22, 8, 1, 9, 37, 92, 155, 188, 171, 120, 67, 30, 12, 1, 10, 46, 129, 247, 343, 359, 291, 187, 97, 42, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2017

Keywords

Comments

Partial sum operator applied to column k gives column k+1.
A(n,k) is also defined for k < 0. All given formulas and programs can be applied also if k is negative.

Examples

			Square array A(n,k) begins:
  1,  1,  1,   1,   1,    1,    1,    1,     1, ...
  0,  1,  2,   3,   4,    5,    6,    7,     8, ...
  1,  2,  4,   7,  11,   16,   22,   29,    37, ...
  1,  3,  7,  14,  25,   41,   63,   92,   129, ...
  2,  5, 12,  26,  51,   92,  155,  247,   376, ...
  2,  7, 19,  45,  96,  188,  343,  590,   966, ...
  4, 11, 30,  75, 171,  359,  702, 1292,  2258, ...
  4, 15, 45, 120, 291,  650, 1352, 2644,  4902, ...
  7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
		

Crossrefs

Rows n=0-4 give: A000012, A001477, A000124, A004006(k+1), A027927(k+3).
Main diagonal gives A292463.
A(n,n+1) gives A292613.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1,
          A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n),
          A(n-1, k)+A(n, k-1))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    # third Maple program:
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)

Formula

G.f. of column k: 1/(1-x)^k * 1/Product_{j>1} (1-x^j).
Column k is Euler transform of k,1,1,1,... .
For fixed k>=0, A(n,k) ~ 2^((k-5)/2) * 3^((k-2)/2) * n^((k-3)/2) * exp(Pi*sqrt(2*n/3)) / Pi^(k-1). - Vaclav Kotesovec, Oct 24 2018

A120477 Apply partial sum operator 5 times to partition numbers.

Original entry on oeis.org

1, 6, 22, 63, 155, 343, 702, 1352, 2480, 4370, 7445, 12323, 19894, 31421, 48675, 74111, 111099, 164221, 239656, 345670, 493243, 696861, 975518, 1353971, 1864315, 2547941, 3457972, 4662273, 6247169, 8322010, 11024775, 14528914, 19051697
Offset: 0

Views

Author

Jonathan Vos Post, Jul 21 2006

Keywords

Comments

In general, if g.f. = 1/(1-x)^m * Product_{k>=1} 1/(1-x^k), then a(n) ~ 2^(m/2 - 2) * 3^((m-1)/2) * n^(m/2 - 1) * exp(Pi*sqrt(2*n/3)) / Pi^m. - Vaclav Kotesovec, Oct 30 2015

Crossrefs

Column k=6 of A292508.

Programs

  • Maple
    with(combinat): g:=1/(1-x)^5/product(1-x^k,k=1..50): gser:=series(g,x=0,40): seq(coeff(gser,x,n),n=0..37); # Emeric Deutsch, Jul 24 2006
  • Mathematica
    nmax = 50; CoefficientList[Series[1/((1-x)^5 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

G.f.: 1/((1-x)^5*Product_{k>=1} (1-x^k)). - Emeric Deutsch, Jul 24 2006
a(n) ~ 9*sqrt(2)*n^(3/2) * exp(Pi*sqrt(2*n/3)) / Pi^5. - Vaclav Kotesovec, Oct 30 2015

Extensions

More terms from Emeric Deutsch, Jul 24 2006

A325951 G.f.: 1/(1-x)^3 * Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 4, 10, 21, 39, 67, 109, 170, 256, 375, 537, 754, 1041, 1416, 1901, 2523, 3314, 4312, 5563, 7121, 9050, 11426, 14338, 17890, 22204, 27422, 33709, 41257, 50288, 61058, 73863, 89043, 106988, 128146, 153029, 182222, 216393, 256302, 302813, 356908, 419700
Offset: 0

Views

Author

Vaclav Kotesovec, May 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[(1/(1-x)^3 * Product[1+x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ 2 * 3^(5/4) * n^(3/4) * exp(Pi*sqrt(n/3)) / Pi^3.
Showing 1-5 of 5 results.