cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014347 Three-fold exponential convolution of primes with themselves.

Original entry on oeis.org

8, 36, 168, 786, 3660, 16866, 76752, 343914, 1514724, 6543066, 27699960, 114793386, 466078116, 1854554490, 7248419496, 27869755866, 105687130980, 395978680266, 1468425404328, 5396913313866, 19675676962308, 71219609783946, 256052236665192, 914773982356902
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1,
          ithprime(n+1), add(b(j, floor(k/2))*
          b(n-j, ceil(k/2))*binomial(n, j), j=0..n))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 1, Prime[n + 1], Sum[b[j, Floor[k/2]] b[n - j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]];
    a[n_] := b[n, 3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)

Formula

E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^3. - Ilya Gutkovskiy, Mar 10 2018