A014347 Three-fold exponential convolution of primes with themselves.
8, 36, 168, 786, 3660, 16866, 76752, 343914, 1514724, 6543066, 27699960, 114793386, 466078116, 1854554490, 7248419496, 27869755866, 105687130980, 395978680266, 1468425404328, 5396913313866, 19675676962308, 71219609783946, 256052236665192, 914773982356902
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add(b(j, floor(k/2))* b(n-j, ceil(k/2))*binomial(n, j), j=0..n)) end: a:= n-> b(n, 3): seq(a(n), n=0..30); # Alois P. Heinz, Mar 10 2018
-
Mathematica
b[n_, k_] := b[n, k] = If[k == 1, Prime[n + 1], Sum[b[j, Floor[k/2]] b[n - j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]]; a[n_] := b[n, 3]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
Formula
E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^3. - Ilya Gutkovskiy, Mar 10 2018