cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014432 a(n) = Sum_{i=1..n-1} a(i)*a(n-1-i), with a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 3, 12, 30, 111, 363, 1353, 4917, 18777, 71769, 280506, 1103556, 4395009, 17622309, 71220828, 289510662, 1183627137, 4862148753, 20061888924, 83100910530, 345457823493, 1440734205513, 6026408186457, 25275954499905, 106277040064191
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A025237.

Programs

  • Maple
    seq(coeff(convert(series((1+x-sqrt(1-2*x-11*x^2))/(2*x),x,50),polynom),x,i),i=0..30);
    A014431:=proc(n) options remember: local i: if n<2 then RETURN([1,3][n+1]) else RETURN(add(A014431(i)*A014431(n-1-i),i=1..n-1)) fi:end;seq(A014431(n),n=0..30); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
  • Mathematica
    Rest[CoefficientList[Series[(1+x-Sqrt[1-2x-11x^2])/2,{x,0,30}],x]] (* Harvey P. Dale, Apr 17 2019 *)
  • PARI
    a(n)=polcoeff((1+x-sqrt(1-2*x-11*x^2+x*O(x^n)))/2,n)

Formula

G.f.: ((1+x-sqrt(1-2*x-11*x^2)))/(2*x). - Michael Somos, Jun 08 2000; corrected by Robert Israel, Sep 10 2020
a(n) = (3/(11*n)) * ((3+n)*A025237(n+1) - (2*n+3)*A025237(n)) for n>0. [Mark van Hoeij, Jul 02 2010]
(n+1)*a(n) = (2*n-1)*a(n-1)+11*(n-2)*a(n-2). - Robert Israel, Sep 10 2020
G.f.: 1 + 3*x/(1 - x - 3*x^2/(1 - x - 3*x^2/(1 - x - 3*x^2/(1 - x - 3*x^2/(1 - ...))))) (continued fraction). - Nikolaos Pantelidis, Nov 24 2022

Extensions

Corrected by C. Ronaldo (aga_new_ac(AT)hotmail.com) and Ralf Stephan, Dec 19 2004