cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014439 Differences between two positive cubes in exactly 1 way.

Original entry on oeis.org

7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 784, 817, 819, 866, 875, 919, 936, 973, 988, 992
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Crossrefs

Cf. A000578, A038593, A181123, A034179 (more than one way), A014440 (exactly two ways), A265625 (more than two ways), A014441 (exactly three ways), A333376, A333377.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    X:= floor(sqrt(N/3)):
    V:= Vector(N):
    for x from 2 to X do
      if x^3 > N then
         y0:= iroot(x^3-N, 3);
         if x^3 - y0^3 > N then y0:= y0+1 fi;
      else y0:= 1 fi;
      for y from y0 to x-1 do
         V[x^3 - y^3] := V[x^3 - y^3]+1
      od
    od: select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 11 2015
  • Mathematica
    r = 992; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] == 1 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Corrected and extended by Don Reble, Nov 19 2006