cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A038593 Differences between positive cubes in 1, 2 or 3 ways: union of A014439, A014440 and A014441.

Original entry on oeis.org

7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 784, 817, 819, 866, 875, 919, 936, 973, 988
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    X:= floor(sqrt(N/3)):
    V:= Vector(N):
    for x from 2 to X do
      if x^3 > N then
         y0:= iroot(x^3-N,3);
         if x^3 - y0^3 > N then y0:= y0+1 fi;
      else y0:= 1 fi;
      for y from y0 to x-1 do
         V[x^3 - y^3] := V[x^3 - y^3]+1
      od
    od:
    select(t -> V[t] <= 3 and V[t]>=1, [$1..N]); # Robert Israel, Dec 10 2015
  • Mathematica
    r = 988; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], 0 < #[[2]] < 4 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Corrected by Don Reble, Nov 19 2006

A181123 Numbers that are the differences of two positive cubes.

Original entry on oeis.org

0, 7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 784, 817, 819, 866, 875, 919, 936, 973
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^3-y^3 = (x-y)(x^2+xy+y^2), the difference of two cubes is a prime number only if x=y+1, in which case all the primes are cuban, see A002407.
The difference can be a square (see A038597), but Fermat's Last Theorem prevents the difference from ever being a cube. Beal's Conjecture implies that there are no higher odd powers in this sequence.
If n is in the sequence, it must be x^3-y^3 where 0 < y <= x < n^(1/2). - Robert Israel, Dec 24 2017

Crossrefs

Cf. A024352 (squares), A147857 (4th powers), A181124-A181128 (5th to 9th powers).

Programs

  • Maple
    N:= 10^4: # to get all terms <= N
    sort(convert(select(`<=`, {0, seq(seq(x^3-y^3, y=1..x-1),x=1..floor(sqrt(N)))}, N),list)); # Robert Israel, Dec 24 2017
  • Mathematica
    nn=10^5; p=3; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]
    With[{nn=60},Take[Union[Abs[Flatten[Differences/@Tuples[ Range[ nn]^3,2]]]], nn]] (* Harvey P. Dale, May 11 2014 *)
  • PARI
    list(lim)=my(v=List([0]),a3); for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim,sqrtnint(a3-lim-1,3)+1,1), a-1, listput(v,a3-b^3))); Set(v) \\ Charles R Greathouse IV, Jan 25 2018

A014440 Differences between two positive cubes in exactly 2 ways.

Original entry on oeis.org

721, 728, 999, 5768, 5824, 5859, 7992, 8911, 9919, 10621, 12663, 12824, 19467, 19656, 23877, 25669, 26973, 27937, 28063, 34209, 35208, 35929, 41743, 43561, 46144, 46592, 46872, 49959, 53144, 63936, 68857, 68913, 71288, 77779, 79352, 80379, 84968, 90125
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Crossrefs

Cf. A000578, A181123, A014439 (exactly one way), A034179 (more than one way), A265625 (more than two ways), A014441 (exactly three ways), A333376, A333377.

Programs

  • Mathematica
    r = 90125; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] == 2 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Extended by Don Reble, Nov 19 2006

A014441 Differences between two positive cubes in exactly 3 ways.

Original entry on oeis.org

3367, 26936, 90909, 152551, 205352, 215488, 420875, 622232, 625177, 727272, 754299, 757701, 845208, 1147627, 1154881, 1220408, 1642816, 1723904, 2113921, 2454543, 2741256, 3056473, 3367000, 3442887, 3492125, 4481477, 4977856, 5001416, 5544504, 5818176
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Crossrefs

Cf. A000578, A181123, A014439 (exactly one way), A034179 (more than one way), A014440 (exactly two ways), A265625 (more than two ways), A333376 (exactly 4 ways), A333377 (exactly 5 ways).

Programs

  • Mathematica
    r = 5818176; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] == 3 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Extended by Don Reble, Nov 19 2006

A333376 Differences between two positive cubes in exactly 4 ways.

Original entry on oeis.org

4118877, 32951016, 52324993, 94287375, 111209679, 214435711, 263608128, 418599944, 442245349, 514859625, 754299000, 889677432, 995635368, 1080305856, 1147627000, 1715485688, 2108865024, 2545759125, 3002661333, 3348799552, 3537962792, 3701994688, 4118877000, 4304670552
Offset: 1

Views

Author

Giovanni Resta, Mar 17 2020

Keywords

Examples

			4118877 = 162^3 - 51^3 = 165^3 - 72^3 = 178^3 - 115^3 = 678^3 - 675^3.
		

Crossrefs

Formula

a(1) = A098110(4).

A333377 Differences between two positive cubes in exactly 5 ways.

Original entry on oeis.org

1412774811, 11302198488, 38144919897, 90417587904, 105443078832, 176596851375, 305159359176, 370544908608, 484581760173, 723340703232, 843544630656, 1029912837219, 1238805803151, 1412774811000, 1808088149952, 1880403273441, 2441274873408, 2846963128464, 2863636114248
Offset: 1

Views

Author

Giovanni Resta, Mar 17 2020

Keywords

Examples

			1412774811 = 1134^3 - 357^3 = 1155^3 - 504^3 = 1246^3 - 805^3 = 2115^3 - 2004^3 = 4746^3 - 4725^3.
		

Crossrefs

Formula

a(1) = A098110(5).

A034179 Difference between two positive cubes in more than one way.

Original entry on oeis.org

721, 728, 999, 3367, 5768, 5824, 5859, 7992, 8911, 9919, 10621, 12663, 12824, 19467, 19656, 23877, 25669, 26936, 26973, 27937, 28063, 34209, 35208, 35929, 41743, 43561, 46144, 46592, 46872, 49959, 53144, 63936, 68857, 68913, 71288, 77779
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{r = Reduce[0 < y < x && n == x^3 - y^3, {x, y}, Integers]}, If[r === False || Head[r] === And, False, Length[r] >= 2]]; Select[ Range[77780], If[ fQ[#], Print[#]; True, False] &] (* Jean-François Alcover, Apr 11 2011 *)
    With[{nn=50},Take[Sort[Transpose[Select[Tally[#[[2]]-#[[1]]&/@Subsets[ Range[ nn*20]^3,{2}]],#[[2]]>1&]][[1]]],nn]] (* Harvey P. Dale, Mar 09 2016 *)

Extensions

Extended by Ray Chandler, Nov 29 2008
Offset corrected by Giovanni Resta, Mar 17 2020

A265625 Differences between two positive cubes in more than two ways.

Original entry on oeis.org

3367, 26936, 90909, 152551, 205352, 215488, 420875, 622232, 625177, 727272, 754299, 757701, 845208, 1147627, 1154881, 1220408, 1642816, 1723904, 2113921, 2454543, 2741256, 3056473, 3367000, 3442887, 3492125, 4118877, 4481477, 4977856, 5001416, 5544504
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2015

Keywords

Examples

			3367 = 15^3 - 2^3 = 16^3 - 9^3 = 34^3 - 33^3.
		

Crossrefs

Cf. A000578, A181123, A014439 (exactly one way), A034179 (more than one way), A014440 (exactly two ways), A014441 (exactly three ways), A333376, A333377.

Programs

  • Mathematica
    r = 5544504; p = 3; Rest@Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] > 2 &], {2, -1, 2}]

A228946 Numbers m such that m^3 - k^3 is a square for some k < m, k > 0.

Original entry on oeis.org

8, 10, 14, 28, 32, 33, 40, 56, 57, 65, 71, 72, 74, 78, 90, 105, 112, 114, 126, 128, 130, 132, 140, 148, 154, 155, 160, 176, 193, 200, 217, 218, 224, 228, 250, 252, 260, 266, 273, 280, 284, 288, 296, 297, 305, 312, 329, 336, 344, 349, 350, 360, 392
Offset: 1

Views

Author

M. F. Hasler, Oct 05 2013

Keywords

Comments

See A038596 = A038597^2 for the possible values of n^3-k^3.

Crossrefs

Programs

Formula

a(n) = A066648(n)^(1/3). - Amiram Eldar, Mar 20 2025

A098110 Smallest number that is the difference between two positive cubes in n ways.

Original entry on oeis.org

7, 721, 3367, 4118877, 1412774811, 424910390480793
Offset: 1

Views

Author

Jeff Burch, Sep 23 2004

Keywords

Comments

a(7) <= 15490327057569000, a(8) <= 123922616460552000. - Giovanni Resta, Mar 19 2020

Examples

			Pairs (x, y) such that x^3 - y^3 = a(1), ..., a(6):
7 = (2, 1);
721 = (16, 15), (9, 2);
3367 = (34, 33), (16, 9), (15, 2)l
4118877 = (162, 51), (165, 72), (178, 115), (678, 675);
1412774811 = (1134, 357), (1155, 504), (1246, 805), (2115, 2004), (4746, 4725);
424910390480793 = (596001, 595602), (317982, 316575), (141705, 134268), (83482, 53935), (77385, 33768), (75978, 23919).
		

Crossrefs

Extensions

a(6) from Giovanni Resta, Mar 19 2020
Showing 1-10 of 10 results.