A056107 Third spoke of a hexagonal spiral.
1, 4, 13, 28, 49, 76, 109, 148, 193, 244, 301, 364, 433, 508, 589, 676, 769, 868, 973, 1084, 1201, 1324, 1453, 1588, 1729, 1876, 2029, 2188, 2353, 2524, 2701, 2884, 3073, 3268, 3469, 3676, 3889, 4108, 4333, 4564, 4801, 5044, 5293, 5548, 5809, 6076, 6349
Offset: 0
References
- Edward J. Barbeau, Murray S. Klamkin and William O. J. Moser, Five Hundred Mathematical Challenges, MAA, Washington DC, 1995, Problem 444, pp. 42 and 195.
- Ben Hamilton, Brainteasers and Mindbenders, Fireside, 1992, p. 107.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..5000
- Henry Bottomley, Illustration of initial terms
- A. J. C. Cunningham, Factorisation of N and N' = (x^n -+ y^n) / (x -+ y) [when x-y=n], Messenger Math., 54 (1924), 17-21 [Incomplete annotated scanned copy]
- Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2.
- A. L. Rubinoff and Leo Moser, Solution to Problem E773, The American Mathematical Monthly, Vol. 55, No. 2 (Feb., 1948), p. 99.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Torus Grid Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..40], n -> 3*n^2 + 1); # G. C. Greubel, Dec 02 2018
-
Magma
[3*n^2 + 1: n in [0..40]]; // G. C. Greubel, Dec 02 2018
-
Maple
seq(3*n^2+1, n=0..46); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
Table[3 n^2 + 1, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *) LinearRecurrence[{3, -3, 1}, {1, 4, 13}, 47] (* Michael De Vlieger, Feb 08 2017 *) CoefficientList[Series[(1 + x + 4 x^2)/(1 - x)^3, {x, 0, 46}], x] (* Michael De Vlieger, Feb 08 2017 *) 1 + 3 Range[0, 20]^2 (* Eric W. Weisstein, Nov 30 2017 *)
-
PARI
for(n=0,1000,if(issquare(n+(n-1)+(n-2)),print1(n", "))); \\ César Aguilera, May 26 2015
-
PARI
a(n) = 3*n^2 + 1; \\ Altug Alkan, Feb 08 2017
-
Sage
[3*n^2 + 1 for n in range(40)] # G. C. Greubel, Dec 02 2018
Formula
a(n) = 3*n^2 + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1+x+4*x^2)/(1-x)^3.
a(n) = a(n-1) + 6*n - 3 for n>0.
a(n) = 2*a(n-1) - a(n-2) + 6 for n>1.
a(n) = A132111(n+1,n-1) for n>1. - Reinhard Zumkeller, Aug 10 2007
E.g.f.: (1 + 3*x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(3))*coth(Pi/sqrt(3)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(3))*csch(Pi/sqrt(3)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(3))*sinh(sqrt(2/3)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(3))*csch(Pi/sqrt(3)). (End)
Comments