cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A056107 Third spoke of a hexagonal spiral.

Original entry on oeis.org

1, 4, 13, 28, 49, 76, 109, 148, 193, 244, 301, 364, 433, 508, 589, 676, 769, 868, 973, 1084, 1201, 1324, 1453, 1588, 1729, 1876, 2029, 2188, 2353, 2524, 2701, 2884, 3073, 3268, 3469, 3676, 3889, 4108, 4333, 4564, 4801, 5044, 5293, 5548, 5809, 6076, 6349
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

a(n+1) is the number of lines crossing n cells of an n X n X n cube. - Lekraj Beedassy, Jul 29 2005
Equals binomial transform of [1, 3, 6, 0, 0, 0, ...]. - Gary W. Adamson, May 03 2008
Each term a(n), with n>1 represents the area of the right trapezoid with bases whose values are equal to hex number A003215(n) and A003215(n+1)and height equal to 1. The right trapezoid is formed by a rectangle with the sides equal to A003215(n) and 1 and a right triangle whose area is 3*n with the greater cathetus equal to the difference A003215(n+1)-A003215(n). - Giacomo Fecondo, Jun 11 2010
2*a(n)^2 is of the form x^4+y^4+(x+y)^4. In fact, 2*a(n)^2 = (n-1)^4+(n+1)^4+(2n)^4. - Bruno Berselli, Jul 16 2013
Numbers m such that m+(m-1)+(m-2) is a square. - César Aguilera, May 26 2015
After 4, twice each term belongs to A181123: 2*a(n) = (n+1)^3 - (n-1)^3. - Bruno Berselli, Mar 09 2016
This is a subsequence of A003136: a(n) = (n-1)^2 + (n-1)*(n+1) + (n+1)^2. - Bruno Berselli, Feb 08 2017
For n > 3, also the number of (not necessarily maximal) cliques in the n X n torus grid graph. - Eric W. Weisstein, Nov 30 2017

References

  • Edward J. Barbeau, Murray S. Klamkin and William O. J. Moser, Five Hundred Mathematical Challenges, MAA, Washington DC, 1995, Problem 444, pp. 42 and 195.
  • Ben Hamilton, Brainteasers and Mindbenders, Fireside, 1992, p. 107.

Crossrefs

Cf. A002648 (prime terms), A201053.
Other spirals: A054552.

Programs

Formula

a(n) = 3*n^2 + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1+x+4*x^2)/(1-x)^3.
a(n) = a(n-1) + 6*n - 3 for n>0.
a(n) = 2*a(n-1) - a(n-2) + 6 for n>1.
a(n) = A056105(n) + 2*n = A056106(n) + n.
a(n) = A056108(n) - n = A056109(n) - 2*n = A003215(n) - 3*n.
a(n) = (A000578(n+1) - A000578(n-1))/2. - Lekraj Beedassy, Jul 29 2005
a(n) = A132111(n+1,n-1) for n>1. - Reinhard Zumkeller, Aug 10 2007
E.g.f.: (1 + 3*x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(3))*coth(Pi/sqrt(3)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(3))*csch(Pi/sqrt(3)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(3))*sinh(sqrt(2/3)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(3))*csch(Pi/sqrt(3)). (End)

A014439 Differences between two positive cubes in exactly 1 way.

Original entry on oeis.org

7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 784, 817, 819, 866, 875, 919, 936, 973, 988, 992
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Crossrefs

Cf. A000578, A038593, A181123, A034179 (more than one way), A014440 (exactly two ways), A265625 (more than two ways), A014441 (exactly three ways), A333376, A333377.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    X:= floor(sqrt(N/3)):
    V:= Vector(N):
    for x from 2 to X do
      if x^3 > N then
         y0:= iroot(x^3-N, 3);
         if x^3 - y0^3 > N then y0:= y0+1 fi;
      else y0:= 1 fi;
      for y from y0 to x-1 do
         V[x^3 - y^3] := V[x^3 - y^3]+1
      od
    od: select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 11 2015
  • Mathematica
    r = 992; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] == 1 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Corrected and extended by Don Reble, Nov 19 2006

A014440 Differences between two positive cubes in exactly 2 ways.

Original entry on oeis.org

721, 728, 999, 5768, 5824, 5859, 7992, 8911, 9919, 10621, 12663, 12824, 19467, 19656, 23877, 25669, 26973, 27937, 28063, 34209, 35208, 35929, 41743, 43561, 46144, 46592, 46872, 49959, 53144, 63936, 68857, 68913, 71288, 77779, 79352, 80379, 84968, 90125
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Crossrefs

Cf. A000578, A181123, A014439 (exactly one way), A034179 (more than one way), A265625 (more than two ways), A014441 (exactly three ways), A333376, A333377.

Programs

  • Mathematica
    r = 90125; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] == 2 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Extended by Don Reble, Nov 19 2006

A014441 Differences between two positive cubes in exactly 3 ways.

Original entry on oeis.org

3367, 26936, 90909, 152551, 205352, 215488, 420875, 622232, 625177, 727272, 754299, 757701, 845208, 1147627, 1154881, 1220408, 1642816, 1723904, 2113921, 2454543, 2741256, 3056473, 3367000, 3442887, 3492125, 4481477, 4977856, 5001416, 5544504, 5818176
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Crossrefs

Cf. A000578, A181123, A014439 (exactly one way), A034179 (more than one way), A014440 (exactly two ways), A265625 (more than two ways), A333376 (exactly 4 ways), A333377 (exactly 5 ways).

Programs

  • Mathematica
    r = 5818176; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] == 3 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Extended by Don Reble, Nov 19 2006

A181124 Difference of two positive 5th powers.

Original entry on oeis.org

0, 31, 211, 242, 781, 992, 1023, 2101, 2882, 3093, 3124, 4651, 6752, 7533, 7744, 7775, 9031, 13682, 15783, 15961, 16564, 16775, 16806, 24992, 26281, 29643, 31744, 32525, 32736, 32767, 40951, 42242, 51273, 55924, 58025, 58806, 59017, 59048, 61051
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^5-y^5 = (x-y)(x^4+x^3*y+x^2*y^2+x*y^3+y^4), the difference of two 5th powers is a prime number only if x=y+1, in which case all the primes are in A121616. The number 7744 is the first of an infinite number of squares in this sequence.

Crossrefs

Cf. A024352 (squares), A181123 (cubes), A147857 (4th powers), A181125-A181128 (6th to 9th powers)

Programs

  • Mathematica
    nn=10^9; p=5; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]

A226903 Shiraishi numbers: a parametrized family of solutions c to the Diophantine equation a^3 + b^3 + c^3 = d^3 with d = c+1.

Original entry on oeis.org

5, 18, 53, 102, 197, 306, 491, 684, 989, 1290, 1745, 2178, 2813, 3402, 4247, 5016, 6101, 7074, 8429, 9630, 11285, 12738, 14723, 16452, 18797, 20826, 23561, 25914, 29069, 31770, 35375, 38448, 42533, 46002, 50597, 54486, 59621, 63954, 69659, 74460, 80765, 86058
Offset: 1

Views

Author

Jonathan Sondow, Jun 22 2013

Keywords

Comments

Shiraishi's solutions to a^3 + b^3 + c^3 = d^3 are a = 3n^2; b = 6n^2 - 3n + 1 or 6n^2 + 3n + 1; c = 9n^3 - 6n^2 + 3n - 1 or 9n^3 + 6n^2 + 3n, respectively, for n > 0; and d = c+1. See Smith and Mikami for a derivation.
Shiraishi's formulas show that the sequence is infinite. Hence the sequences A023042 (solutions to x^3 + y^3 + z^3 = w^3), A225908 (solutions to a^3 + b^3 = c^3 - d^3), A225909 (solutions to a^3 + b^3 = (c+1)^3 - c^3) and A226902 (numbers c in A225909) are also infinite.
Shiraishi's solution b = 6n^2 +/- 3n + 1 is the centered triangular numbers A005448 except 1.

Examples

			The first two terms are a(1) = 9 - 6 + 3 - 1 = 5 and a(2) = 9 + 6 + 3 = 18. Then Shiraishi's formulas give 3^3 + 4^3 + 5^3 = 6^3 and 3^3 + 10^3 + 18^3 = 19^3.
		

References

  • Shiraishi Chochu (aka Shiraishi Nagatada), Shamei Sampu (Sacred Mathematics), 1826.

Crossrefs

Formula

a(2n-1) = 9n^3 - 6n^2 + 3n - 1.
a(2n) = 9n^3 + 6n^2 + 3n.
G.f.: x*(5 + 13*x + 20*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1 + x)^3*(1 - x)^4). [Bruno Berselli, Jun 22 2013]
a(n) = (18*n^3 + 27*n^2 + 27*n + 1 - (3*n^2 + 3*n + 1)*(-1)^n)/16. [Bruno Berselli, Jun 22 2013]
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. - Chai Wah Wu, Aug 05 2025

A333376 Differences between two positive cubes in exactly 4 ways.

Original entry on oeis.org

4118877, 32951016, 52324993, 94287375, 111209679, 214435711, 263608128, 418599944, 442245349, 514859625, 754299000, 889677432, 995635368, 1080305856, 1147627000, 1715485688, 2108865024, 2545759125, 3002661333, 3348799552, 3537962792, 3701994688, 4118877000, 4304670552
Offset: 1

Views

Author

Giovanni Resta, Mar 17 2020

Keywords

Examples

			4118877 = 162^3 - 51^3 = 165^3 - 72^3 = 178^3 - 115^3 = 678^3 - 675^3.
		

Crossrefs

Formula

a(1) = A098110(4).

A333377 Differences between two positive cubes in exactly 5 ways.

Original entry on oeis.org

1412774811, 11302198488, 38144919897, 90417587904, 105443078832, 176596851375, 305159359176, 370544908608, 484581760173, 723340703232, 843544630656, 1029912837219, 1238805803151, 1412774811000, 1808088149952, 1880403273441, 2441274873408, 2846963128464, 2863636114248
Offset: 1

Views

Author

Giovanni Resta, Mar 17 2020

Keywords

Examples

			1412774811 = 1134^3 - 357^3 = 1155^3 - 504^3 = 1246^3 - 805^3 = 2115^3 - 2004^3 = 4746^3 - 4725^3.
		

Crossrefs

Formula

a(1) = A098110(5).

A034179 Difference between two positive cubes in more than one way.

Original entry on oeis.org

721, 728, 999, 3367, 5768, 5824, 5859, 7992, 8911, 9919, 10621, 12663, 12824, 19467, 19656, 23877, 25669, 26936, 26973, 27937, 28063, 34209, 35208, 35929, 41743, 43561, 46144, 46592, 46872, 49959, 53144, 63936, 68857, 68913, 71288, 77779
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{r = Reduce[0 < y < x && n == x^3 - y^3, {x, y}, Integers]}, If[r === False || Head[r] === And, False, Length[r] >= 2]]; Select[ Range[77780], If[ fQ[#], Print[#]; True, False] &] (* Jean-François Alcover, Apr 11 2011 *)
    With[{nn=50},Take[Sort[Transpose[Select[Tally[#[[2]]-#[[1]]&/@Subsets[ Range[ nn*20]^3,{2}]],#[[2]]>1&]][[1]]],nn]] (* Harvey P. Dale, Mar 09 2016 *)

Extensions

Extended by Ray Chandler, Nov 29 2008
Offset corrected by Giovanni Resta, Mar 17 2020

A265625 Differences between two positive cubes in more than two ways.

Original entry on oeis.org

3367, 26936, 90909, 152551, 205352, 215488, 420875, 622232, 625177, 727272, 754299, 757701, 845208, 1147627, 1154881, 1220408, 1642816, 1723904, 2113921, 2454543, 2741256, 3056473, 3367000, 3442887, 3492125, 4118877, 4481477, 4977856, 5001416, 5544504
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2015

Keywords

Examples

			3367 = 15^3 - 2^3 = 16^3 - 9^3 = 34^3 - 33^3.
		

Crossrefs

Cf. A000578, A181123, A014439 (exactly one way), A034179 (more than one way), A014440 (exactly two ways), A014441 (exactly three ways), A333376, A333377.

Programs

  • Mathematica
    r = 5544504; p = 3; Rest@Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], #[[2]] > 2 &], {2, -1, 2}]
Showing 1-10 of 28 results. Next