cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014479 Exponential generating function = (1+2*x)/(1-2*x)^3.

Original entry on oeis.org

1, 8, 72, 768, 9600, 138240, 2257920, 41287680, 836075520, 18579456000, 449622835200, 11771943321600, 331576403558400, 9998303861145600, 321374052679680000, 10969567664799744000, 396275631890890752000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(add(count(Composition(k))*count(Permutation(k)),k=1..n),n=1..17); # Zerinvary Lajos, Oct 17 2006
    seq(2^n*(n+1)^2*n!, n=0..30); # Robert Israel, Oct 28 2015
  • Mathematica
    Table[2^n (n+1)^2 n!, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
  • PARI
    {a(n)=polcoeff( sum(m=0,n,(2*m+1)^(m+1)*x^m / (1 + (2*m+1)*x +x*O(x^n))^(m+1)),n)} \\ Paul D. Hanna, Jan 02 2013
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    vector(30, n, n--; n!*(n+1)^2*2^n) \\ Altug Alkan, Oct 28 2015

Formula

a(n) = A014477(n) * n!. - Franklin T. Adams-Watters, Nov 02 2006
G.f.: Sum_{n>=0} (2*n+1)^(n+1) * x^n / (1 + (2*n+1)*x)^(n+1). - Paul D. Hanna, Jan 02 2013
From Vladimir Reshetnikov, Oct 28 2015: (Start)
a(n) = 2^n*(n+1)^2*n!.
Recurrence: a(0) = 1, n*a(n) = 2*(n+1)^2*a(n-1). (End)
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*(Ei(1/2) - gamma + log(2)), where Ei(x) is the exponential integral and gamma is Euler's constant (A001620).
Sum_{n>=0} (-1)^n/a(n) = 2*(gamma - Ei(-1/2) - gamma - log(2)). (End)