A014491 a(n) = gcd(n, 2^n - 1).
1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 5, 1, 21, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 15, 1, 1, 7, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 21, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 1
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Daniel M. Kane, Carlo Sanna, and Jeffrey Shallit, Waring's theorem for binary powers, arXiv:1801.04483 [math.NT], Jan 13 2018.
Crossrefs
Cf. A014664.
Programs
-
Maple
A014491:=n->igcd(n, 2^n-1); seq(A014491(n), n=1..100); # Wesley Ivan Hurt, Feb 02 2014
-
Mathematica
Table[GCD[n, 2^n-1], {n, 100}] (* Harvey P. Dale, Mar 14 2013 *)
-
PARI
a(n) = gcd(n, -1 + 1 << n); \\ Amiram Eldar, Nov 21 2024
Comments