A014524 Number of Hamiltonian paths from NW to SW corners in a grid with 2n rows and 4 columns.
0, 1, 8, 47, 264, 1480, 8305, 46616, 261663, 1468752, 8244304, 46276385, 259755560, 1458042831, 8184190168, 45938958232, 257861540369, 1447411446840, 8124514782015, 45603992276896, 255981331487648
Offset: 0
Examples
Illustration of a(1)=1: .__.__.__. .__.__.__| Illustration of a few of the 8 solutions to a(2): .__.__.__. . .__.__. . .__.__. .__.__.__. .__.__. | | | .__| |__| .__| .__.__.__| |__ | | |__| |__. .__. |__. |__.__.__. .__| |__| .__.__.__| | |__.__| .__.__.__|
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- K. L. Collins and L. B. Krompart, The number of Hamiltonian paths in a rectangular grid, Discrete Math. 169 (1997), 29-38.
- Index entries for sequences related to graphs, Hamiltonian
- Index entries for linear recurrences with constant coefficients, signature (7,-9,7,-1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[x (x + 1)/(x^4 - 7 x^3 + 9 x^2 - 7 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
Formula
From Colin Barker, May 20 2013: (Start)
a(n) = 7*a(n-1)-9*a(n-2)+7*a(n-3)-a(n-4).
G.f.: x*(x+1)/(x^4-7*x^3+9*x^2-7*x+1). (End)
Extensions
Name clarified by Andrew Howroyd, Apr 10 2016