A014530 List of sizes of squares occurring in lowest order example of a perfect squared square.
2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50
Offset: 1
Examples
Example from _Rainer Rosenthal_, Mar 25 2021: (Start) . Terms | 2 4 6 7 8 9 11 15 16 17 18 19 24 25 27 29 33 35 37 42 50 ------------------------------------------------------------------------- | <-- sort selected groups ------------------------------------------------------------------------- (50,35,27) | . . . . . . . . . . . . . . 27 . . 35 . . 50 (8,19) | . . . . 8 . . . . . . 19 . . . . . . (15,17,11) | . . . . . 11 15 . 17 . . . . . . . (6,24) | . . 6 . . . . 24 . . . . . (29,25,9,2)| 2 . . 9 . . 25 29 . . . (7,18) | . 7 . 18 . . . (16) | . 16 . . . (42) | . . . 42 (4,37) | 4 . 37 (33) | 33 _________________________________________________________________________ Groups of terms selected and sorted for the Bouwkamp piling . The Bouwkamp code says how to pile up the squares in order to tile the square with side length 50 + 35 + 27 = 112. The procedure is beautifully animated in "Eric Weisstein's World of Mathematics" entry - see link. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences. Academic Press, San Diego, 1995, Fig. M4482.
- I. Stewart, Squaring the Square, Scientific Amer., 277, July 1997, pp. 94-96.
Links
- Stuart E. Anderson, Catalogues of Perfect Squared Squares
- C. J. Bouwkamp and A. J. W. Duijvestijn, Catalogue of Simple Perfect Squared Squares of orders 21 through 25, EUT Report 92-WSK-03, Eindhoven University of Technology, Eindhoven, The Netherlands, November 1992.
- C. J. Bouwkamp and A. J. W. Duijvestijn, Album of Simple Perfect Squared Squares of order 26, EUT Report 94-WSK-02, Eindhoven University of Technology, Eindhoven, The Netherlands, December 1994.
- A. J. W. Duijvestijn, Simple perfect square of lowest order, J. Combin. Theory Ser. B 25 (1978), 240-243.
- Gergely Földvári, Photo of my artwork (2022) depicting the lowest order perfect squared square using 21 distinct colors
- N. D. Kazarinoff and R. Weitzenkamp, On the existence of compound perfect squared squares of small order, J. Combin. Theory Ser. B 14 (1973).163-179. [A compound perfect squared square must contain at least 22 subsquares.]
- Trinity College Mathematical Society, The Squared Square
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
- Index entries for squared squares
Crossrefs
Extensions
'Simple' removed from definition by Geoffrey H. Morley, Oct 17 2012
Comments