cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014602 Discriminants of imaginary quadratic fields with class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 19, 43, 67, 163
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Only fundamental discriminants are listed. The non-fundamental discriminants -12, -16, -27, and -28 also have class number 1 (and there are no others). - Andrew V. Sutherland, Apr 19 2009

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.
  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, p. 271.
  • J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, see p. 483.

Crossrefs

Cf. A003656 (real case), A003173, A013658, A014603, A046002...A046020.

Programs

  • Mathematica
    Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] &) /@ Select[ Range[200], NumberFieldClassNumber[ Sqrt[-#]] == 1 &]] (* Jean-François Alcover, Jan 04 2012 *)
  • PARI
    is(n)=isfundamental(-n) && qfbclassno(-n)==1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 1
    A014602 = lambda n: filter(is_fund_and_qfbcn_1, (-1,-2,..-n))
    [-n for n in A014602(270)] # Peter Luschny, Aug 10 2014