A014602 Discriminants of imaginary quadratic fields with class number 1 (negated).
3, 4, 7, 8, 11, 19, 43, 67, 163
Offset: 1
References
- H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.
- D. A. Cox, Primes of the form x^2+ny^2, Wiley, p. 271.
- J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, see p. 483.
Links
- A. Abatzoglou, A. Silverberg, A. V. Sutherland, and A. Wong, A framework for deterministic primality proving using elliptic curves with complex multiplication, arXiv preprint arXiv:1404.0107 [math.NT], 2014.
- Giacomo Cherubini and Alessandro Fazzari, Hyperbolic angles from Heegner points, arXiv:2206.08282 [math.NT], 2022. Mentions this sequence.
- Charles Delorme and Guillermo Pineda-Villavicencio, Quadratic Form Representations via Generalized Continuants, Journal of Integer Sequences, Vol. 18 (2015), Article 15.6.4.
- Erich Kaltofen and Heinrich Rolletschek, Computing greatest common divisors and factorizations in quadratic number fields, Mathematics of Computation 53.188 (1989): 697-720. See page 698.
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
- Carl Ludwig Siegel, Zum Beweise des Starkschen Satzes, Inventiones mathematicae 5.3 (1968): 180-191.
- Harold M. Stark, A complete determination of the complex quadratic fields of class-number one, The Michigan Mathematical Journal 14.1 (1967): 1-27.
- Eric Weisstein's World of Mathematics, Class Number
- Index entries for sequences related to quadratic fields
Programs
-
Mathematica
Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] &) /@ Select[ Range[200], NumberFieldClassNumber[ Sqrt[-#]] == 1 &]] (* Jean-François Alcover, Jan 04 2012 *)
-
PARI
is(n)=isfundamental(-n) && qfbclassno(-n)==1 \\ Charles R Greathouse IV, Nov 20 2012
-
Sage
is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 1 A014602 = lambda n: filter(is_fund_and_qfbcn_1, (-1,-2,..-n)) [-n for n in A014602(270)] # Peter Luschny, Aug 10 2014
Comments