A014648 Number of partitions of n into its divisors with at least one part of size 1.
1, 1, 1, 2, 1, 5, 1, 6, 3, 8, 1, 33, 1, 11, 11, 26, 1, 66, 1, 76, 15, 17, 1, 378, 5, 20, 18, 136, 1, 648, 1, 166, 23, 26, 23, 1954, 1, 29, 27, 1212, 1, 1500, 1, 309, 261, 35, 1, 8600, 7, 378, 35, 422, 1, 2877, 35, 2803, 39, 44, 1, 66129, 1, 47, 461, 1626, 41, 4936
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A018818.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local b, l; l:= sort([divisors(n)[]]): b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i)))) end; forget(b): b(n-1, nops(l)) end: seq(a(n), n=1..100); # Alois P. Heinz, Feb 05 2014
-
Mathematica
a[n_] := a[n] = Module[{b, l}, l = Divisors[n]; b[m_, i_] := b[m, i] = If[m==0, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n-1, Length[l]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 07 2015, after Alois P. Heinz *)
Formula
Coefficient of x^(n-1) in expansion of 1/Product_{d divides n} (1-x^d). - Vladeta Jovovic, Apr 11 2004