A014650 Number of partitions of n into its divisors that are powers of primes (A000961) with at least one part of size 1.
1, 1, 1, 2, 1, 5, 1, 6, 3, 8, 1, 27, 1, 11, 11, 26, 1, 43, 1, 63, 15, 17, 1, 215, 5, 20, 18, 114, 1, 226, 1, 166, 23, 26, 23, 734, 1, 29, 27, 728, 1, 422, 1, 261, 181, 35, 1, 2697, 7, 179, 35, 357, 1, 791, 35, 1729, 39, 44, 1, 6747, 1, 47, 325, 1626, 41, 996, 1, 594, 47, 1062, 1, 20345, 1, 56, 327, 735, 47, 1374, 1, 13485, 216, 62, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- David A. Corneth, PARI program
Programs
-
PARI
\\ This is for computing a small number of terms: primepower_divisors_with1_reversed(n) = vecsort(select(d -> ((1==d) || isprimepower(d)), divisors(n)), , 4); partitions_into_with_trailing_ones(n,parts,from=1) = if(!n,1, if(#parts<=(from+1), if(#parts == from,1,(1+(n\parts[from]))), my(s=0); for(i=from,#parts,if(parts[i]<=n, s += partitions_into_with_trailing_ones(n-parts[i],parts,i))); (s))); A014650(n) = partitions_into_with_trailing_ones(n-1,primepower_divisors_with1_reversed(n)); \\ Antti Karttunen, Sep 10 2018
-
PARI
\\ For an efficient program to compute large numbers of terms, see David A. Corneth's PARI program included in the Links-section. - Antti Karttunen, Sep 12 2018
Extensions
More terms from and the name clarified by Antti Karttunen, Sep 10 2018