A014657 Numbers m that divide 2^k + 1 for some nonnegative k.
1, 2, 3, 5, 9, 11, 13, 17, 19, 25, 27, 29, 33, 37, 41, 43, 53, 57, 59, 61, 65, 67, 81, 83, 97, 99, 101, 107, 109, 113, 121, 125, 129, 131, 137, 139, 145, 149, 157, 163, 169, 171, 173, 177, 179, 181, 185, 193, 197, 201, 205, 209, 211, 227, 229, 241, 243, 249, 251, 257, 265
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.
Crossrefs
Programs
-
Haskell
import Data.List (findIndices) a014657 n = a014657_list !! (n-1) a014657_list = map (+ 1) $ findIndices (> 0) $ map a195470 [1..] -- Reinhard Zumkeller, Sep 21 2011
-
Maple
select(t -> [msolve(2^x+1,t)] <> [], [2*i+1 $ i=1..1000]); # Robert Israel, Aug 12 2014
-
Mathematica
ok[n_] := Module[{k=0}, While[k<=n && Mod[2^k + 1, n] > 0, k++]; k
Jean-François Alcover, Apr 06 2011, after PARI prog *) okQ[n_] := Module[{k = MultiplicativeOrder[2, n]}, EvenQ[k] && Mod[2^(k/2) + 1, n] == 0]; Join[{1, 2}, Select[Range[3, 265, 2], okQ]] (* T. D. Noe, Apr 06 2011 *) -
PARI
isA014657(n) = {local(r);r=0;for(k=0,n,if(Mod(2^k+1,n)==Mod(0,n),r=1));r} \\ Michael B. Porter, Dec 06 2009
Extensions
More terms from Henry Bottomley, May 19 2000
Extended and corrected by David W. Wilson, May 01 2001
Comments