cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014661 Numbers that do not divide 2^k + 1 for any k>0.

Original entry on oeis.org

2, 4, 6, 7, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 58, 60, 62, 63, 64, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Keywords

Comments

A195470(a(n)) = 0 for n > 1. [Reinhard Zumkeller, Sep 21 2011]

References

  • P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.

Crossrefs

Cf. A014657.
Cf. A000051.

Programs

  • Haskell
    import Data.List (elemIndices)
    a014661 n = a014661_list !! (n-1)
    a014661_list = 2 : map (+ 1) (elemIndices 0 $ map a195470 [1..])
    -- Reinhard Zumkeller, Sep 21 2011
  • Mathematica
    divQ[n_] := For[k = 1, k <= n, k++, If[Divisible[2^k + 1, n], Return[True], If[k == n, Return[False]]]]; Select[Range[100], !divQ[#]& ] (* Jean-François Alcover, Jun 18 2012 *)
    dndQ[n_]:=NoneTrue[2^Range[n]+1,Divisible[#,n]&]; Select[Range[100],dndQ] (* The program uses the NoneTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 10 2015 *)

Extensions

More terms from Henry Bottomley, May 19 2000