A014663 Primes p such that multiplicative order of 2 modulo p is odd.
7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
Offset: 1
Keywords
References
- Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.
- P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- H. H. Hasse, Über die Dichte der Primzahlen p, ... , Math. Ann., 168 (1966), 19-23.
- J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 118. No. 2, (1985), 449-461.
- Chunlei Li, Nian Li, and Matthew G. Parker, Complementary Sequence Pairs of Types II and III. [From _N. J. A. Sloane_, Jun 16 2012]
Crossrefs
Programs
-
Mathematica
okQ[p_] := OddQ[MultiplicativeOrder[2, p]]; Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
-
PARI
isA014663(p)=1==Mod(1,p)<<((p-1)>>factor(p-1,2)[1,2]) listA014663(N=1000)=forprime(p=3,N,isA014663(p)&print1(p", ")) \\ M. F. Hasler, Dec 08 2007
-
PARI
lista(nn) = {forprime(p=3, nn, if (znorder(Mod(2, p)) % 2, print1(p, ", ")););} \\ Michel Marcus, Feb 06 2015
Extensions
Edited by M. F. Hasler, Dec 08 2007
More terms from Max Alekseyev, Feb 06 2010
Comments