cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014675 The infinite Fibonacci word (start with 1, apply 1->2, 2->21, take limit).

Original entry on oeis.org

2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2
Offset: 0

Views

Author

Keywords

Comments

The limiting mean and variance of the first n terms are both equal to the golden ratio (A001622). - Clark Kimberling, Mar 12 2014
Let F = A000045 (Fibonacci numbers). For n >= 3, the first F(n)-2 terms of A014675 form a palindrome; see A001911. If k is not one of the numbers F(n)-2, then the first k terms of A014675 do not form a palindrome. - Clark Kimberling, Jul 14 2014
First differences of A000201. - Tom Edgar, Apr 23 2015 [Editor's note: except for the offset: as for A022342, below. - M. F. Hasler, Oct 13 2017]
Also first differences of A022342 (which starts at offset 1): a(n)=A022342(n+2)-A022342(n+1), n >= 0. Equal to A001468 without its first term: a(n) = A001468(n+1), n >= 0. - M. F. Hasler, Oct 13 2017
The word is a concatenation of three runs: 1, 2, and 22. The limiting proportions of these are respectively 1/2, 1 - phi/2, and (phi - 1)/2, where phi = golden ratio. The mean runlength is (phi + 1)/2. - Clark Kimberling, Dec 26 2010

References

  • D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43. See Table 2.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7, p. 36.
  • G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.

Crossrefs

This is the {2,1} version. The standard form is A003849 (alphabet {0,1}). See also A005614 (alphabet {1,0}), A003842 (alphabet {1,2} instead of {2,1}).
Equals A001468 except for initial term.
Differs from A025143 in many entries starting at entry 8.
First differences of A000201 and of A022342.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Maple
    Digits := 50: t := evalf( (1+sqrt(5))/2); A014675 := n->floor((n+2)*t)-floor((n+1)*t);
  • Mathematica
    Nest[ Flatten[ # /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 11] (* Robert G. Wilson v *)
    SubstitutionSystem[{1->{2},2->{2,1}},{1},{11}][[1]] (* Harvey P. Dale, Jan 01 2023 *)
  • PARI
    first(n)=my(v=[1],u); while(#vCharles R Greathouse IV, Jun 21 2017
    
  • PARI
    apply( {A014675(n,r=quadgen(5)-1)=(n+2)\r-(n+1)\r}, [0..99]) \\ M. F. Hasler, Apr 07 2021, improved on suggestion from Kevin Ryde, Apr 23 2021
    
  • Python
    from math import isqrt
    def A014675(n): return (n+2+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 10 2022

Formula

Define strings S(0)=1, S(1)=2, S(n)=S(n-1).S(n-2) for n>=2. Sequence is S(infinity).
a(n) = floor((n+2)*phi) - floor((n+1)*phi) = A000201(n+2) - A000201(n+1), phi = (1 + sqrt(5))/2.

Extensions

Corrected by N. J. A. Sloane, Nov 07 2001