A245920
Limit-reverse of the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
Original entry on oeis.org
2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 0
S = infinite Fibonacci word A014675, B = (s(0)); that is, (m,k) = (0,0);
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,1)
B'(2) = (2,1,2)
B'(3) = (2,1,2,1)
B'(4) = (2,1,2,1,2)
B'(5) = (2,1,2,1,2,2)
S* = (2,1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...),
with index sequence (0,2,5,7,15,...)
-
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]] ; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]]
A246128
Index sequence for limit-block extending the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
Original entry on oeis.org
0, 2, 7, 10, 15, 23, 31, 36, 44, 49, 57, 70, 78, 91, 104, 112, 125, 138, 159, 193, 214, 248, 282, 303, 337, 371, 392, 426, 447, 481, 515, 536, 570, 591, 625, 659, 680, 714, 748, 803, 892, 981, 1036, 1125, 1180, 1269, 1358, 1413, 1502, 1557, 1646, 1735, 1790
Offset: 0
S = the infinite Fibonacci word A014675, with B = (s(0)); that is, (m,k) = (0,0); S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,2)
B'(2) = (2,2,1)
B'(3) = (2,2,1,2)
B'(4) = (2,2,1,2,1)
B'(5) = (2,2,1,2,1,2)
S^ = (2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2,...),
with index sequence (0,2,7,10,15,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*)
q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)
A245921
Index sequence for limit-reversing the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
Original entry on oeis.org
0, 2, 5, 7, 15, 20, 28, 36, 41, 54, 75, 96, 109, 130, 143, 164, 185, 198, 219, 240, 253, 274, 308, 329, 363, 397, 418, 452, 473, 507, 541, 562, 596, 617, 651, 685, 706, 740, 774, 795, 829, 850, 884, 918, 973, 1007, 1062, 1117, 1151, 1206, 1261, 1295, 1350
Offset: 0
S = infinite Fibonacci word A014675, B = (s(0)); that is, (m,k) = (0,0);
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,1)
B'(2) = (2,1,2)
B'(3) = (2,1,2,1)
B'(4) = (2,1,2,1,2)
B'(5) = (2,1,2,1,2,2)
S* = (2,1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...),
with index sequence (0,2,5,7,15,...)
-
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind] (*finds the position of the SECOND appearance of seqtofind. Example: seqPosition2[{1,2,3,4,2,3},{2}] = 5*)
A014675 = Nest[Flatten[# /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 25]; ans = Join[{A014675[[p[0] = pos = seqPosition2[A014675, #] - 1]]}, #] &[{A014675[[1]]}]; cfs = Table[A014675 = Drop[A014675, pos - 1]; ans = Join[{A014675[[p[n] = pos = seqPosition2[A014675, #] - 1]]}, #] &[ans], {n, z}]; q = -1+Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]] (* A245921 *)
q1 = Differences[q] (* A245922 *)
A246127
Limiting block extension of the (2,1)-version of the infinite Fibonacci word A014675 with first term as initial block.
Original entry on oeis.org
2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2
Offset: 0
S = the infinite Fibonacci word A014675, with B = (s(0)); that is, (m,k) = (0,0)
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2)
B'(1) = (2,2)
B'(2) = (2,2,1)
B'(3) = (2,2,1,2)
B'(4) = (2,2,1,2,1)
B'(5) = (2,2,1,2,1,2)
S^ = (2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2,...),
with index sequence (0,2,7,10,15,...)
-
seqPosition1[list_, seqtofind_] := If[Length[#] > Length[list], {}, Last[Last[ Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 1]]]] &[seqtofind]; s = Differences[Table[Floor[n*GoldenRatio], {n, 10000}]]; t = {{2}}; p[0] = seqPosition1[s, Last[t]]; s = Drop[s, p[0]]; Off[Last::nolast]; n = 1; While[(p[n] = seqPosition1[s, Last[t]]) > 0, (AppendTo[t, Take[s, {#, # + Length[Last[t]]}]]; s = Drop[s, #]) &[p[n]]; n++]; On[Last::nolast]; t1 = Last[t] (*A246127*)
q = -1 + Accumulate[Table[p[k], {k, 0, n - 1}]] (*A246128*)
A378398
Rectangular array read by descending antidiagonals: (row 1) = u, and for n >= 2, (row n) = u-inverse runlength sequence of u, where u = A014675 (an infinite Fibonacci word). See Comments.
Original entry on oeis.org
2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2
Offset: 1
The corner of the array begins:
2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2
1 1 2 1 1 2 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1
2 1 2 2 1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 2 1
2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2
1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 2
2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1
1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2
2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2
2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 1 2 2
1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 2
2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1
2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1
-
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = SubstitutionSystem[{1 -> {2}, 2 -> {2, 1}}, {1}, {7}][[1]] (* A014675 *);
rows = {row1}; col = Take[row1, 12];
Do[AppendTo[rows, Take[invRE[Last[rows], col[[n]]], Length[row1]]], {n, 2, Length[col]}]
rows // ColumnForm (* array *)
w[n_, k_] := rows[[n]][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Nov 20 2024 *)
A245975
Decimal expansion of the number whose continued fraction is the (2,1)-version of the infinite Fibonacci word A014675.
Original entry on oeis.org
2, 7, 0, 2, 9, 3, 8, 3, 5, 8, 0, 2, 2, 5, 1, 0, 2, 9, 4, 4, 4, 5, 0, 5, 0, 9, 7, 4, 6, 9, 3, 0, 0, 3, 7, 3, 4, 5, 3, 2, 7, 0, 3, 1, 5, 2, 9, 0, 9, 2, 3, 1, 2, 2, 1, 4, 0, 1, 4, 1, 2, 0, 0, 0, 3, 0, 7, 7, 4, 6, 9, 8, 3, 7, 2, 6, 6, 4, 8, 0, 2, 7, 0, 3, 5, 5
Offset: 1
[2,1,2,2,1,2,1,2,2,...] = 2.702938358022510294445050974693003734532...
-
z = 300; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; (* A014675 *)
x1 = N[FromContinuedFraction[s], 100]
r1 = RealDigits[x1, 10] (* A245975 *)
ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}];
cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}];
rcf = Last[Map[Reverse, cfs]] (* A245920 *)
x2 = N[FromContinuedFraction[rcf], z]
r2 = RealDigits[x2, 10] (* A245976 *)
A339949
a(n) is the greatest runlength in all n-sections of the infinite Fibonacci word A014675.
Original entry on oeis.org
2, 3, 5, 6, 7, 3, 2, 12, 4, 4, 4, 4, 18, 2, 3, 6, 20, 5, 3, 2, 30, 4, 3, 4, 4, 9, 2, 3, 9, 4, 4, 3, 4, 47, 2, 3, 5, 10, 6, 3, 2, 15, 4, 4, 4, 4, 13, 2, 3, 7, 8, 5, 3, 2, 77, 4, 3, 5, 6, 8, 3, 2, 10, 4, 4, 3, 4, 24, 2, 3, 6, 78, 6, 3, 2, 22, 4, 3, 4, 4, 11, 2
Offset: 1
For n >= 1, r = 0..n, k >= 0, let A014675(n*k+r) denote the k-th term of the r-th n-section of A014675; i.e.,
(A014675(k)) = 212212122122121221212212212122122121221212212212122121...
has runlengths 1,1,2,1,1,1,2,1,2,1,...; a(1) = 2.
(A014675(2k)) = 22112211222122212221122112221222122211221122112221222...
has runlengths 2,2,2,2,3,1,3,1,3,2,...
(A014675(2k+1)) = 122212221122112211222122211221122112221222122211221...
has runlengths 1,3,1,3,2,2,2,2,2,3,...; a(2) = 3.
(A014675(3k)) = 22111222211122221122222112222211222211122221112222111...
has runlengths 2,3,4,3,4,2,5,2,5,2,4,3,4,3,...
(A014675(3k+1)) = 112222111222211122221112222111222211222221122221112...
has runlengths 2,4,3,4,3,4,3,4,3,4,,5,2,4,3,...
(A014675(3k+2)) = 222211222221122221112222111222211122221112222112222...
has runlengths 4,2,5,2,4,3,4,3,4,3,4,3,4,2,...; a(3) = 5.
- Gandhar Joshi, Table of n, a(n) for n = 1..10000 (terms 1..232 from Jeffrey Shallit).
- Dmitry Badziahin and Jeffrey Shallit, Badly approximable numbers, Kronecker's theorem, and diversity of Sturmian characteristic sequences, arXiv:2006.15842 [math.NT], 2020.
- Gandhar Joshi and Dan Rust, Monochromatic arithmetic progressions in the Fibonacci word, arXiv:2501.05830 [math.NT], 2025. See p. 9.
-
r = (1 + Sqrt[5])/2; z = 4000;
f[n_] := Floor[(n + 2) r] - Floor[(n+1) r]; (* A014675 *)
t = Table[Max[Map[Length,Union[Split[Table [f[n m], {n, 0, Floor[z/m]}]]]]], {m, 1, 20}, {n, 1, m}];
Map[Max, t] (* A339949 *)
-
phi = quadgen(5);
g(n) = min(frac(n * phi), 1 - frac(n * phi));
a(n) = if (g(n) <= (1 / phi)^2, ceil((1 / phi) / g(n)), 2*ceil(((1 / phi) - g(n)) / g(2 * n))); \\ Gandhar Joshi, Jan 14 2025
A245977
Limit-reverse of the infinite Fibonacci word A014675 = (s(0),s(1),...) = (2,1,2,2,1,2,1,2, ...) using initial block (s(2),s(3)) = (2,2).
Original entry on oeis.org
2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2
Offset: 0
S = the infinite Fibonacci word A014675, with B = (s(2), s(3)); that is, (m,k) = (2,3)
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2,2)
B'(1) = (2,2,1)
B'(2) = (2,2,1,2)
B'(3) = (2,2,1,2,1)
B'(4) = (2,2,1,2,1,2)
B'(5) = (2,2,1,2,1,2,2)
S* = (2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,...), with index sequence (3,8,11,16,21,29,...)
-
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[3]], s[[4]]}]; (* Initial block is (s(3),s(4)) [OR (s(2),s(3)) if using offset 0] *); cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]] (* A245977 *)
A245978
Index sequence for limit-reversing the infinite Fibonacci word A014675 = (s(0),s(1),...) = (2,1,2,2,1,2,1,2,...) using initial block (s(2),s(3)) = (2,2).
Original entry on oeis.org
3, 8, 11, 16, 21, 29, 37, 42, 50, 63, 71, 84, 92, 105, 118, 126, 139, 152, 173, 194, 207, 228, 249, 262, 283, 296, 317, 338, 351, 372, 406, 427, 461, 482, 516, 550, 571, 605, 626, 660, 694, 715, 749, 783, 804, 838, 859, 893, 927, 948, 982, 1016, 1071, 1126
Offset: 0
S = the infinite Fibonacci word A014675, with B = (s(2), s(3)); that is, (m,k) = (2,3)
S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...)
B'(0) = (2,2)
B'(1) = (2,2,1)
B'(2) = (2,2,1,2)
B'(3) = (2,2,1,2,1)
B'(4) = (2,2,1,2,1,2)
B'(5) = (2,2,1,2,1,2,2)
S* = (2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,...), with index sequence (3,8,11,16,21,29,...)
-
z = 140; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{_, #, _}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[3]], s[[4]]}]; (* Initial block is (s(3),s(4)) [OR (s(2),s(3)) if using offset 0] *)
cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; q = Join[{3}, Rest[Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]]]] (* A245978 *)
q1 = Differences[q] (* A245979 *)
A339950
Numbers k such that all k-sections of the infinite Fibonacci word A014675 have just two different run-lengths.
Original entry on oeis.org
1, 7, 14, 20, 27, 35, 41, 48, 54, 62, 69, 75, 82, 90, 96, 103, 109, 117, 124, 130, 137, 143, 151, 158, 164, 171, 179, 185, 192, 198, 206, 213, 219, 226, 234, 240, 247, 253, 260, 268, 274, 281, 287, 295, 302, 308, 315, 323, 329, 336, 342, 350, 357, 363, 370, 376, 384, 391, 397, 404
Offset: 1
Let W = A014675, so that as a word, W = 21221212212212122121221221212212212122121221221...
The unique 1-section of W is W itself, which is a concatenation of runs 1, 2, and 22, so that a(1) = 2. The sequence A339949 shows that a(n) > 2 for n = 2,3,4,5,6. For n = 7, the n-section of W that starts with its first letter, 2, is 221221221221221221221221221221221221121..., in which the runs are 22, 1, 11, supporting the conjecture that a(2) = 7.
Some run-lengths may appear quite late. For example, when n = 68, the third run-length appears in the n-section S(k=0) only with the 2829th element, corresponding to the 192372-th element of the original sequence. - _M. F. Hasler_, Apr 07 2021
-
r = (1 + Sqrt[5])/2; z = 80000;
f[n_] := Floor[(n + 1) r] - Floor[n r]; (* A014675 *)
t = Table[Max[Map[Length,
Union[Split[Table [f[n d], {n, 0, Floor[z/d]}]]]]], {d, 1,
400}, {n, 1, d}];
u = Map[Max, t]
Flatten[Position[u, 2]] (* A339950 *)
Showing 1-10 of 45 results.
Comments