A014677 First differences of A001468.
1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1
Offset: 0
Keywords
Links
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
Crossrefs
Programs
-
Python
from math import isqrt def A014677(n): return (n+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)&-2)+(n+isqrt(m-20*n-20)>>1)+1 # Chai Wah Wu, Aug 25 2022
Formula
abs(a(n)) = floor(f*ceiling(n/f)) - ceiling(f*floor(n/f)) where f=phi=(1+sqrt(5))/2; for n > 1, abs(a(n)) = A005713(n-1). - Benoit Cloitre, Apr 21 2003
G.f. equals the continued fraction: A(x) = [0;1, 1/x, 1/x, 1/x^2, 1/x^3, 1/x^5, 1/x^8, ..., 1/x^Fibonacci(n), ...]. - Paul D. Hanna, Dec 17 2004
a(n) = b(n) - b(n-1) with b(n):=A005614(n), n >= 1.
a(n) = pi(A270788(n)), n >= 1, where pi is the letter-to-letter map pi(1)=-1, pi(2)=1, pi(3)=0. - Michel Dekking, Dec 30 2019
Comments