cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014679 G.f.: (1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 1, 3, 2, 3, 6, 6, 7, 10, 11, 13, 16, 17, 20, 24, 25, 28, 33, 35, 38, 43, 46, 50, 55, 58, 63, 69, 72, 77, 84, 88, 93, 100, 105, 111, 118, 123, 130, 138, 143, 150, 159, 165, 172, 181, 188, 196, 205, 212, 221, 231, 238, 247, 258, 266, 275, 286, 295, 305
Offset: 0

Views

Author

Keywords

Comments

Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of M_12.

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 255, Theorem 3.20, where the series is given in the form GF_2 (see formula line).

Programs

  • Magma
    I:=[1,0,1,3,2,3,6]; [n le 7 select I[n] else 2*Self(n-1)- 2*Self(n-2)+3*Self(n-3)-3*Self(n-4)+2*Self(n-5)-2*Self(n-6)+Self(n-7): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
    
  • Maple
    (1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4));
  • Mathematica
    CoefficientList[Series[(1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4)), {x,0,60}],x] (* Harvey P. Dale, Mar 17 2011 *)
    LinearRecurrence[{2,-2,3,-3,2,-2,1},{1,0,1,3,2,3,6},60] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-2,2,-3,3,-2,2]^n*[1;0;1;3;2;3;6])[1,1] \\ Charles R Greathouse IV, Feb 10 2017

Formula

Can also be written as GF_2 = (1 + x^2 + 3*x^3 + x^4 + 3*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 3*x^9 + x^10 + 3*x^11 + x^12 + x^14 ) / ( (1-x^4)*(1-x^6)*(1-x^7)).
G.f.: (1-x+x^2)^2/((1-x)^3*(1+x^2)(1+x+x^2)). a(n)=n^2/12+n/4+13/36-A057077(n)/4+4*A099837(n+3)/9. - R. J. Mathar, Jan 11 2009
a(0)=1, a(1)=0, a(2)=1, a(3)=3, a(4)=2, a(5)=3, a(6)=6, a(n)= 2*a(n-1)- 2*a(n-2)+3*a(n-3)-3*a(n-4)+2*a(n-5)-2*a(n-6)+a(n-7). - Harvey P. Dale, Apr 10 2012