cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014715 Decimal expansion of Conway's constant.

Original entry on oeis.org

1, 3, 0, 3, 5, 7, 7, 2, 6, 9, 0, 3, 4, 2, 9, 6, 3, 9, 1, 2, 5, 7, 0, 9, 9, 1, 1, 2, 1, 5, 2, 5, 5, 1, 8, 9, 0, 7, 3, 0, 7, 0, 2, 5, 0, 4, 6, 5, 9, 4, 0, 4, 8, 7, 5, 7, 5, 4, 8, 6, 1, 3, 9, 0, 6, 2, 8, 5, 5, 0, 8, 8, 7, 8, 5, 2, 4, 6, 1, 5, 5, 7, 1, 2, 6, 8, 1, 5, 7, 6, 6, 8, 6, 4, 4, 2, 5, 2, 2, 5, 5, 5
Offset: 1

Views

Author

Keywords

Comments

An algebraic integer of degree 71. - Charles R Greathouse IV, Aug 10 2014

Examples

			1.303577269034296391257099112152551890730702504659404875754861390628550...
		

References

  • John H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 209.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 486.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.

Crossrefs

Programs

  • Mathematica
    RealDigits[ NSolve[{0 == Plus @@ ({1, 0, -1, -2, -1, 2, 2, 1, -1, -1, -1, -1, -1, 2, 5, 3, -2, -10, -3, -2, 6, 6, 1, 9, -3, -7, -8, -8, 10, 6, 8, -5, -12, 7, -7, 7, 1, -3, 10, 1, -6, -2, -10, -3, 2, 9, -3, 14, -8, 0, -7, 9, 3, -4, -10, -7, 12, 7, 2, -12, -4, -2, 5, 0, 1, -7, 7, -4, 12, -6, 3, -6} x^Range[71, 0, -1])}, {x}, 105][[-1, -1, -1]]][[1]] (* Ryan Propper, Jul 29 2005 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 20080); x=NULL; r=solve(x=1, 2,\
    x^71-x^69-2*x^68-x^67+2*x^66+2*x^65+x^64-x^63-x^62-x^61-x^60\
    -x^59+2*x^58+5*x^57+3*x^56-2*x^55-10*x^54-3*x^53-2*x^52+6*x^51\
    +6*x^50+x^49+9*x^48-3*x^47-7*x^46-8*x^45-8*x^44+10*x^43+6*x^42\
    +8*x^41-5*x^40-12*x^39+7*x^38-7*x^37+7*x^36+x^35-3*x^34+10*x^33\
    +x^32-6*x^31-2*x^30-10*x^29-3*x^28+2*x^27+9*x^26-3*x^25+14*x^24\
    -8*x^23-7*x^21+9*x^20+3*x^19-4*x^18-10*x^17-7*x^16+12*x^15\
    +7*x^14+2*x^13-12*x^12-4*x^11-2*x^10+5*x^9+x^7-7*x^6+7*x^5\
    -4*x^4+12*x^3-6*x^2+3*x-6); for (n=1, 20000, d=floor(r); r=(r-d)*10; write("b014715.txt", n, " ", d)); } \\ Harry J. Smith, May 15 2009
    
  • PARI
    P=Pol([1, 0, -1, -2, -1, 2, 2, 1, -1, -1, -1, -1, -1, 2, 5, 3, -2, -10, -3, -2, 6, 6, 1, 9, -3, -7, -8, -8, 10, 6, 8, -5, -12, 7, -7, 7, 1, -3, 10, 1, -6, -2, -10, -3, 2, 9, -3, 14, -8, 0, -7, 9, 3, -4, -10, -7, 12, 7, 2, -12, -4, -2, 5, 0, 1, -7, 7, -4, 12, -6, 3, -6]); polrootsreal(P)[3] \\ Charles R Greathouse IV, Aug 10 2014

Extensions

More terms from Eric W. Weisstein, Jul 01 2003