A014773 Squares of odd heptagonal numbers.
1, 49, 3025, 6561, 35721, 55225, 162409, 219961, 485809, 613089, 1147041, 1385329, 2325625, 2725801, 4239481, 4862025, 7144929, 8059921, 11336689, 12623809, 17147881, 18896409, 24950025, 27258841, 35153041, 38130625, 48205249, 51969681, 64593369, 69272329
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Programs
-
Mathematica
Table[SeriesCoefficient[x (1 + 48 x + 2972 x^2 + 3344 x^3 + 17262 x^4 + 5648 x^5 + 8396 x^6 + 560 x^7 + 169 x^8)/((1 - x)^5 (1 + x)^4), {x, 0, n}], {n, 30}] (* Michael De Vlieger, Dec 17 2015 *)
-
PARI
Vec(x*(1+48*x+2972*x^2+3344*x^3+17262*x^4+5648*x^5+8396*x^6+560*x^7+169*x^8) / ((1-x)^5*(1+x)^4) + O(x^40)) \\ Colin Barker, Dec 17 2015
Formula
From Colin Barker, Dec 17 2015: (Start)
a(n) = 1/2*(200*n^4-920*n^3+1578*n^2-1196*n+338) for n even.
a(n) = 1/2*(200*n^4-520*n^3+498*n^2-208*n+32) for n odd.
G.f.: x*(1+48*x+2972*x^2+3344*x^3+17262*x^4+5648*x^5+8396*x^6+560*x^7+169*x^8) / ((1-x)^5*(1+x)^4).
(End)
Extensions
More terms from Erich Friedman.