cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014840 Sum of all the digits of n in every base prime to n from 2 to n-1.

Original entry on oeis.org

2, 2, 7, 2, 15, 10, 15, 8, 34, 12, 45, 22, 31, 32, 73, 28, 90, 40, 57, 50, 135, 46, 118, 74, 117, 70, 198, 58, 222, 120, 139, 122, 192, 92, 296, 152, 216, 136, 372, 112, 408, 202, 235, 208, 497, 176, 442, 224, 338, 260, 607, 202, 454, 276, 416, 330, 755, 194, 776
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local b;
     add(convert(convert(n,base,b),`+`), b = select(t -> igcd(t,n)=1, [$2..n-1]))
    end proc:
    map(f, [$3..100]); # Robert Israel, Nov 08 2024
  • Mathematica
    Table[Sum[If[CoprimeQ[i, n], Mod[Total[IntegerDigits[n, i]], n], 0], {i, 2, n-1}], {n, 3, 61}] (* Stefano Spezia, Sep 06 2022 *)
  • PARI
    a(n) = {s = 0; for (i=2, n-1, if (gcd(i, n) == 1, d = digits(n, i); s += sum(j=1, #d, d[j]););); s;} \\ Michel Marcus, May 30 2014
    
  • Python
    from math import gcd
    from sympy.ntheory import digits
    def a(n): return sum(sum(digits(n, b)[1:]) for b in range(2, n) if gcd(b, n) == 1)
    print([a(n) for n in range(3, 62)]) # Michael S. Branicky, Sep 06 2022