A014913 a(1)=1, a(n) = 24*a(n-1) + n.
1, 26, 627, 15052, 361253, 8670078, 208081879, 4993965104, 119855162505, 2876523900130, 69036573603131, 1656877766475156, 39765066395403757, 954361593489690182, 22904678243752564383, 549712277850061545208, 13193094668401477085009, 316634272041635450040234
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (26,-49,24).
Crossrefs
Row n=24 of A126885.
Programs
-
Magma
I:=[1, 26, 627]; [n le 3 select I[n] else 26*Self(n-1) - 49*Self(n-2) + 24*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 19 2012
-
Mathematica
LinearRecurrence[{26, -49, 24}, {1, 26, 627}, 20] (* Vincenzo Librandi, Oct 19 2012 *) nxt[{n_,a_}]:={n+1,24a+n+1}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Jun 30 2025 *)
Formula
a(1)=1, a(2)=26, a(3)=627, a(n) = 26*a(n-1) - 49*a(n-2) + 24*a(n-3). - Vincenzo Librandi, Oct 19 2012
From Elmo R. Oliveira, Mar 30 2025: (Start)
G.f.: x/((1-24*x)*(x-1)^2).
E.g.f.: exp(x)*(24*exp(23*x) - 23*x - 24)/529.
a(n) = (24^(n+1) - 23*n - 24)/529. (End)