A015129 Triangle of (Gaussian) q-binomial coefficients for q = -13.
1, 1, 1, 1, -12, 1, 1, 157, 157, 1, 1, -2040, 26690, -2040, 1, 1, 26521, 4508570, 4508570, 26521, 1, 1, -344772, 761974851, -9900819720, 761974851, -344772, 1, 1, 4482037, 128773405047, 21752862899691, 21752862899691, 128773405047, 4482037, 1
Offset: 0
Examples
The square array looks as follows: 1 1 1 1 1 1 ... 1 -12 157 -2040 26521 -344772 ... 1 157 26690 4508570 761974851 128773405047 ... 1 -2040 4508570 -9900819720 21752862899691 ... 1 26521 761974851 21752862899691 621305270140974342 ... 1 -344772 128773405047 -47790911017216080 17745052029585350965782 ... (...)
Links
Crossrefs
Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24). - M. F. Hasler, Nov 05 2012
Programs
-
Magma
qBinomial:= func< n,k,q | k eq 0 select 1 else (&*[(1 -q^(n-j+1))/(1 -q^j): j in [1..k]]) >; [qBinomial(n,k,-13): k in [0..n], n in [0..10]]; // A015129 // G. C. Greubel, Dec 01 2021
-
Mathematica
Flatten[Table[QBinomial[x,y,-13],{x,0,10},{y,0,x}]] (* Harvey P. Dale, Jul 12 2014 *)
-
PARI
A015129(n, r, q=-13)=prod(i=1, r, (q^(1+n-i+r)-1)/(q^i-1)) \\ (Indexing is that of the square array: n,r=0,1,2,...) - M. F. Hasler, Nov 03 2012
-
Sage
flatten([[q_binomial(n,k,-13) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 01 2021
Formula
As a triangle, T(n, k) = Product_{i=1..k} ((-13)^(1+n-i)-1)/((-13)^i-1), with 0 <= k <= n = 0,1,2,...
Comments