A015195 Sum of Gaussian binomial coefficients for q=9.
1, 2, 12, 184, 9104, 1225248, 540023488, 652225844096, 2584219514040576, 28081351726592246272, 1001235747932175990213632, 97915621602690773814148184064, 31420034518763282871588038742544384, 27654326463468067495668136467306727743488
Offset: 0
Keywords
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..60
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Crossrefs
Programs
-
Mathematica
Total/@Table[QBinomial[n, m, 9], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *) Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(9^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Formula
a(n) = 2*a(n-1)+(9^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 9^(n^2/4), where c = EllipticTheta[3,0,1/9]/QPochhammer[1/9,1/9] = 1.3946866902389... if n is even and c = EllipticTheta[2,0,1/9]/QPochhammer[1/9,1/9] = 1.333574200539... if n is odd. - Vaclav Kotesovec, Aug 21 2013