cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015235 Theta series of lattice Kappa_8.

Original entry on oeis.org

1, 0, 132, 192, 828, 1152, 2796, 2880, 6828, 5376, 14904, 10944, 20772, 18432, 40224, 25920, 53964, 41472, 76452, 58176, 107784, 69504, 156816, 101376, 163284, 131328, 259032, 147072, 295200, 206208, 357480, 250560, 432780, 269568, 576072, 365184, 555804, 426240
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 132*q^4 + 192*q^6 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 161.

Crossrefs

Cf. A015236 (K_7), A015233 (K_9), A015232 (K_10), A015229 (K_11), A004010 (K_12), A029897 (K_13), A047628 (K_14).

Programs

  • Sage
    L = [1, 0, 132, 192, 828, 1152, 2796, 2880, 6828, 5376]
    M = ModularForms(Gamma0(12),4)
    bases = [.q_expansion(35) for  in M.integral_basis()]
    f = sum(x*y for (x,y) in zip(bases,L)); list(f) # Andy Huchala, Jul 23 2021

Extensions

More terms from Sean A. Irvine, Feb 26 2020