cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015265 Gaussian binomial coefficient [ n,2 ] for q = -13.

Original entry on oeis.org

1, 157, 26690, 4508570, 761974851, 128773405047, 21762709934980, 3677897920745140, 621564749363392901, 105044442632566365137, 17752510805031727164870, 3000174326048697741925710, 507029461102251552321630151, 85687978926280231101185088427
Offset: 2

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,2] for q=-2,...,-12: A015249, A015251, A015253, A015255, A015257 A015258, A015259, A015260, A015261, A015262, A015264.
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    I:=[1,157,26690]; [n le 3 select I[n] else 157*Self(n-1)+2041*Self(n-2)-2197*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
    
  • Mathematica
    Table[QBinomial[n, 2, -13], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • PARI
    A015265(n,q=-13)=(1-q^n)*(q^(n-1)-1)/2352 \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,2,-13) for n in range(2,14)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^2/((1-x)*(1+13*x)*(1-169*x)). - Ralf Stephan, Apr 01 2004
a(2) = 1, a(3) = 157, a(4) = 26690, a(n) = 157*a(n-1) + 2041*a(n-2) - 2197*a(n-3). - Vincenzo Librandi, Oct 28 2012
a(n) = (1/2352)*( (1 - (-13)^n)*((-13)^(n-1) - 1) ). - M. F. Hasler, Nov 03 2012