A015265 Gaussian binomial coefficient [ n,2 ] for q = -13.
1, 157, 26690, 4508570, 761974851, 128773405047, 21762709934980, 3677897920745140, 621564749363392901, 105044442632566365137, 17752510805031727164870, 3000174326048697741925710, 507029461102251552321630151, 85687978926280231101185088427
Offset: 2
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..200
- Index entries for linear recurrences with constant coefficients, signature (157, 2041, -2197).
Crossrefs
Programs
-
Magma
I:=[1,157,26690]; [n le 3 select I[n] else 157*Self(n-1)+2041*Self(n-2)-2197*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
-
Mathematica
Table[QBinomial[n, 2, -13], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
-
PARI
A015265(n,q=-13)=(1-q^n)*(q^(n-1)-1)/2352 \\ M. F. Hasler, Nov 03 2012
-
Sage
[gaussian_binomial(n,2,-13) for n in range(2,14)] # Zerinvary Lajos, May 27 2009
Formula
G.f.: x^2/((1-x)*(1+13*x)*(1-169*x)). - Ralf Stephan, Apr 01 2004
a(2) = 1, a(3) = 157, a(4) = 26690, a(n) = 157*a(n-1) + 2041*a(n-2) - 2197*a(n-3). - Vincenzo Librandi, Oct 28 2012
a(n) = (1/2352)*( (1 - (-13)^n)*((-13)^(n-1) - 1) ). - M. F. Hasler, Nov 03 2012