A015288 Gaussian binomial coefficient [ n,4 ] for q = -3.
1, 61, 5551, 433771, 35569222, 2869444942, 232740363922, 18843459775162, 1526550040078063, 123644349019377043, 10015359787639069513, 811239619864365082573, 65710531328480659504924
Offset: 4
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..500
- Index entries related to Gaussian binomial coefficients.
- Index entries for linear recurrences with constant coefficients, signature (61,1830,-16470,-44469,59049).
Programs
-
Magma
r:=4; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
-
Mathematica
Table[QBinomial[n, 4, -3], {n, 4, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
-
Sage
[gaussian_binomial(n,4,-3) for n in range(4,17)] # Zerinvary Lajos, May 27 2009
Formula
G.f.: -x^4 / ( (x-1)*(27*x+1)*(81*x-1)*(9*x-1)*(3*x+1) ). - R. J. Mathar, Aug 03 2016