cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015289 Gaussian binomial coefficient [ n,4 ] for q = -4.

Original entry on oeis.org

1, 205, 55965, 14107485, 3625623645, 927257668701, 237435704507485, 60779845138496605, 15559876852907031645, 3983313338565919030365, 1019729183363623510391901, 261050608944894743386831965
Offset: 4

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=4; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
  • Mathematica
    Table[QBinomial[n, 4, -4], {n, 4, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • Sage
    [gaussian_binomial(n,4,-4) for n in range(4,16)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: -x^4 / ( (x-1)*(256*x-1)*(64*x+1)*(4*x+1)*(16*x-1) ). - R. J. Mathar, Aug 03 2016