cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015315 Gaussian binomial coefficient [ n,5 ] for q = -9.

Original entry on oeis.org

1, -53144, 3177326971, -187360965026144, 11065164158125239526, -653375813208979143531248, 38581260992855637306941215162, -2278184404047301621409794099651808
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Mathematica
    Table[QBinomial[n, 5, -9], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • Sage
    [gaussian_binomial(n,5,-9) for n in range(5,13)] # Zerinvary Lajos, May 27 2009

Formula

G.f.: -x^5 / ( (x-1)*(81*x-1)*(9*x+1)*(729*x+1)*(6561*x-1)*(59049*x+1) ). - R. J. Mathar, Aug 04 2016