A015333 Gaussian binomial coefficient [ n,6 ] for q = -10.
1, 909091, 918273728191, 917356372736537191, 917448117456547208447191, 917438943076290926712489347191, 917439860515234003003416059680347191, 917439768771348869854580597622587770347191
Offset: 6
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 6..170
Programs
-
Mathematica
Table[QBinomial[n, 6, -10], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
Sage
[gaussian_binomial(n,6,-10) for n in range(6,14)] # Zerinvary Lajos, May 27 2009
Formula
G.f.: x^6/((1-x)*(1+10*x)*(1-100*x)*(1+1000*x)*(1-10000*x)*(1+100000*x)*(1-1000000*x)). - Vincenzo Librandi, Oct 30 2012