A015353 Gaussian binomial coefficient [ n,7 ] for q = -11.
1, -17863240, 351004879413684, -6834956902420811530200, 133203071884610819994409432410, -2595734922068255016665440444288632600, 50583558850117484638411502782868591609069220
Offset: 7
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 7..140
Programs
-
Magma
r:=7; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
-
Mathematica
Table[QBinomial[n, 7, -11], {n, 7, 16}] (* Vincenzo Librandi, Nov 02 2012 *)
-
Sage
[gaussian_binomial(n,7,-11) for n in range(7,14)] # Zerinvary Lajos, May 27 2009