cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015359 Gaussian binomial coefficient [ n,8 ] for q=-4.

Original entry on oeis.org

1, 52429, 3665049245, 236497451900765, 15559876852907031645, 1018737244037427165087837, 66780267552779682073190144093, 4376244513647234644625387176712285, 286805936690898816904813999400193022045
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A015356, A015357, A015360, A015361, A015363, A015364, A015365, A015367 A015368, A015369, A015370 (r=8, q=-2..-13). q=-4 integers/coefficients: A014985 (r=1), A015253 (r=2), A015271 (r=3), A015289 (r=4), A015308 (r=5), A015326 (r=6), A015341 (r=7), A015376 (r=9), A015390 (r=10), A015408 (r=11), A015425 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -4], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015359(n,r=8,q=-4)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-4) for n in range(8,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-4)^(n-i+1)-1)/((-4)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(16384*x+1)*(4096*x-1)*(256*x-1)*(65536*x-1)*(64*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - R. J. Mathar, Sep 02 2016