A015367 Gaussian binomial coefficient [ n,8 ] for q=-10.
1, 90909091, 9182736463728191, 917356290091909926537191, 91744803489448201844894398447191, 9174388605059687035653977786959679347191, 917439777945737474914267633276565557306870347191
Offset: 8
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 8..100
Crossrefs
Programs
-
Magma
r:=8; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Mathematica
Table[QBinomial[n, 8, -10], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
-
PARI
A015367(n,r=8,q=-10)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
Sage
[gaussian_binomial(n,8,-10) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..8} ((-10)^(n-i+1)-1)/((-10)^i-1). - M. F. Hasler, Nov 03 2012