cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015390 Gaussian binomial coefficient [ n,10 ] for q=-4.

Original entry on oeis.org

1, 838861, 938250090141, 968690748238618461, 1019729183363623510391901, 1068220365220113899181567068253, 1120383768613759382944995805859747933, 1174735830441360695151745376566623493806173, 1231818594183047090443637654682442929123639613533
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=10; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 10, -4], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,10,-4) for n in range(10,17)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: x^10 / ((x-1) * (4*x+1) * (16*x-1) * (64*x+1) * (256*x-1) * (1024*x+1) * (4096*x-1) * (16384*x+1) * (65536*x-1) * (262144*x+1) * (1048576*x-1)). - Colin Barker, Jan 13 2014