A015398 Gaussian binomial coefficient [ n,10 ] for q=-10.
1, 9090909091, 91827364555463728191, 917356289265463645628926537191, 9174480340688613582018540679613398447191, 91743885968026547299515818524084563811678679347191, 917439777120042501293773510987809326410294679682025870347191
Offset: 10
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 10..110
Crossrefs
Programs
-
Magma
r:=10; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Mathematica
Table[QBinomial[n, 10, -10], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
Sage
[gaussian_binomial(n,10,-10) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..10} ((-10)^(n-i+1)-1)/((-10)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012