cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015407 Gaussian binomial coefficient [ n,11 ] for q=-3.

Original entry on oeis.org

1, -132860, 26477735830, -4522934399547980, 811239619864365082573, -143119691677080990521708240, 25388050075285266699527263288120, -4495361402895546052989488899628855120
Offset: 11

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=11; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 05 2012
  • Mathematica
    Table[QBinomial[n, 11, -3], {n, 11, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
  • Sage
    [gaussian_binomial(n,11,-3) for n in range(11,19)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = Product_{i=1..11} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 05 2012