cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015408 Gaussian binomial coefficient [ n,11 ] for q=-4.

Original entry on oeis.org

1, -3355443, 15011998086813, -61996192875273494691, 261050608944894743386831965, -1093857392934787687867181291059107, 4589090822384565497755014953620236474461, -19246867256860431244800698494652605702283863971
Offset: 11

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=11; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 05 2012
  • Mathematica
    Table[QBinomial[n, 11, -4], {n, 11, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
  • Sage
    [gaussian_binomial(n,11,-4) for n in range(11,18)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = Product_{i=1..11} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 05 2012