A015410 Gaussian binomial coefficient [ n,11 ] for q=-6.
1, -310968905, 116041991914472611, -41905685236388916561230885, 15214999201976941569510489219969931, -5519247137793116688209551072778853951561365, 2002409531513525089470147425061900304433199288073771
Offset: 11
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 11..120
Programs
-
Magma
r:=11; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
-
Mathematica
Table[QBinomial[n, 11, -6], {n, 11, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
-
Sage
[gaussian_binomial(n,11,-6) for n in range(11,17)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = Product_{i=1..11} ((-6)^(n-i+1)-1)/((-6)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012