cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015423 Gaussian binomial coefficient [ n,12 ] for q=-2.

Original entry on oeis.org

1, 2731, 14913991, 54301841231, 237244744338239, 942314556807454559, 3920970870875818419999, 15935828658299317547308959, 65529064844612576067331339935, 267883966717492783113707839256735
Offset: 12

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=12 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012

Programs

  • Magma
    r:=12; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2012
  • Mathematica
    Table[QBinomial[n, 12, -2], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
  • Sage
    [gaussian_binomial(n,12,-2) for n in range(12,22)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = Product_{i=1..12} ((-2)^(n-i+1)-1)/((-2)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012