cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015434 Gaussian binomial coefficient [ n,12 ] for q=-11.

Original entry on oeis.org

1, 2876892678661, 9104162632986302495960347, 28551311330859170052594978984538703567, 89612366318560505321323986969057938917191132920348, 281240247078624326614268823428029385995576471270476701478391628
Offset: 12

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=12; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
  • Mathematica
    Table[QBinomial[n, 12, -11], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
  • Sage
    [gaussian_binomial(n,12,-11) for n in range(12,17)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = product(((-11)^(n-i+1)-1)/((-11)^i-1), i=1..12) (by definition). - Vincenzo Librandi, Nov 06 2012