A015434 Gaussian binomial coefficient [ n,12 ] for q=-11.
1, 2876892678661, 9104162632986302495960347, 28551311330859170052594978984538703567, 89612366318560505321323986969057938917191132920348, 281240247078624326614268823428029385995576471270476701478391628
Offset: 12
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 12..90
Programs
-
Magma
r:=12; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
-
Mathematica
Table[QBinomial[n, 12, -11], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
-
Sage
[gaussian_binomial(n,12,-11) for n in range(12,17)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = product(((-11)^(n-i+1)-1)/((-11)^i-1), i=1..12) (by definition). - Vincenzo Librandi, Nov 06 2012