cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015436 Gaussian binomial coefficient [ n,12 ] for q=-12.

Original entry on oeis.org

1, 8230246567621, 73894863887821708223693461, 658472968288485964089656737315874219221, 5871294272699857358353797657582417236064659116493269, 52348839118418455816373076458257326632599555195248225626953928149
Offset: 12

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=12; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
  • Mathematica
    Table[QBinomial[n, 12, -12], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
  • Sage
    [gaussian_binomial(n,12,-12) for n in range(12,17)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = Product_{i=1..12} ((-12)^(n-i+1)-1)/((-12)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012