cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015438 Gaussian binomial coefficient [ n,12 ] for q=-13.

Original entry on oeis.org

1, 21633936185161, 507029461102251552321630151, 11807441196984503845077844573952807835871, 275100402115798836253928241395289617394098490488956444, 6409295323626866454933457428954320223001885025904687118646704057084
Offset: 12

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=12; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
  • Mathematica
    Table[QBinomial[n, 12, -13], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
  • PARI
    A015438(n,r=12,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    
  • Sage
    [gaussian_binomial(n,12,-13) for n in range(12,17)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n)=product_{i=1..12} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012