A015438 Gaussian binomial coefficient [ n,12 ] for q=-13.
1, 21633936185161, 507029461102251552321630151, 11807441196984503845077844573952807835871, 275100402115798836253928241395289617394098490488956444, 6409295323626866454933457428954320223001885025904687118646704057084
Offset: 12
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
Crossrefs
Programs
-
Magma
r:=12; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
-
Mathematica
Table[QBinomial[n, 12, -13], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
-
PARI
A015438(n,r=12,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
Sage
[gaussian_binomial(n,12,-13) for n in range(12,17)] # Zerinvary Lajos, May 28 2009
Formula
a(n)=product_{i=1..12} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012