cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015469 q-Fibonacci numbers for q=11, scaling a(n-2).

Original entry on oeis.org

0, 1, 1, 12, 133, 16105, 1963358, 2595689713, 3480804151551, 50586130104323474, 746191869036731097905, 119280194867984161366496439, 19354414621214347335584253057344, 34032051023004810891710239239325511573
Offset: 0

Views

Author

Keywords

Crossrefs

q-Fibonacci numbers: A000045 (q=1), A015459 (q=2), A015460 (q=3), A015461 (q=4),
A015462 (q=5), A015463 (q=6), A015464 (q=7), A015465 (q=8), A015467 (q=9), A015468 (q=10), this sequence (q=11), A015470 (q=12).

Programs

  • GAP
    q:=11;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
  • Magma
    [0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(11^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
    
  • Maple
    q:=11; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*11^(n-2)},  a, {n, 61}] (* Vincenzo Librandi, Nov 09 2012 *)
    F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
    Table[F[n, 11], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
  • PARI
    q=11; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 17 2019
    
  • Sage
    def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
    [F(n,11) for n in (0..20)] # G. C. Greubel, Dec 17 2019
    

Formula

a(n) = a(n-1) + 11^(n-2)*a(n-2).