A015477 q-Fibonacci numbers for q=6, scaling a(n-1).
0, 1, 6, 217, 46878, 60754105, 472423967358, 22041412681808953, 6170184900967295034366, 10363541282645125629123492409, 104440618529953822157016270251244030, 6315124821581059445960128077000914860421689
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
GAP
q:=6;; a:=[0,1];; for n in [3..20] do a[n]:=q^(n-2)*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
-
Magma
q:=6; I:=[0,1]; [n le 2 select I[n] else q^(n-2)*Self(n-1) + Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 17 2019
-
Maple
q:=6; seq(add((product((1-q^(2*(n-j-1-k)))/(1-q^(2*k+2)), k=0..j-1))* q^binomial(n-2*j,2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
-
Mathematica
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]*6^(n-1) + a[n-2]}, a, {n, 20}] (* Vincenzo Librandi, Nov 09 2012 *) F[n_, q_]:= Sum[QBinomial[n-j-1, j, q^2]*q^Binomial[n-2*j,2], {j, 0, Floor[(n-1)/2]}]; Table[F[n, 6], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
-
PARI
q=6; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=q^(n-2)*v[n-1]+v[n-2]); v \\ G. C. Greubel, Dec 17 2019
-
Sage
def F(n,q): return sum( q_binomial(n-j-1, j, q^2)*q^binomial(n-2*j,2) for j in (0..floor((n-1)/2))) [F(n,6) for n in (0..20)] # G. C. Greubel, Dec 17 2019
Formula
a(n) = 6^(n-1)*a(n-1) + a(n-2).