cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015482 q-Fibonacci numbers for q=10, scaling a(n-1).

Original entry on oeis.org

0, 1, 10, 1001, 1001010, 10010101001, 1001010101101010, 1001010101111020101001, 10010101011111202020111101010, 1001010101111121203021211212020101001, 1001010101111121213031312223131303021111101010
Offset: 0

Views

Author

Keywords

Crossrefs

q-Fibonacci numbers: A280222 (q=-3), A280221 (q=-2), A280261 (q=-1), A000045 (q=1), A015473 (q=2), A015474 (q=3), A015475 (q=4), A015476 (q=5), A015477 (q=6), A015479 (q=7), A015480 (q=8), A015481 (q=9), this sequence (q=10), A015484 (q=11), A015485 (q=12).
Differs from A015468.

Programs

  • GAP
    q:=10;; a:=[0,1];; for n in [3..20] do a[n]:=q^(n-2)*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 19 2019
  • Magma
    q:=10; I:=[0,1]; [n le 2 select I[n] else q^(n-2)*Self(n-1) + Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 19 2019
    
  • Maple
    q:=10; seq(add((product((1-q^(2*(n-j-1-k)))/(1-q^(2*k+2)), k=0..j-1))* q^binomial(n-2*j,2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 19 2019
  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]*10^(n-1)+ a[n-2]}, a, {n, 40}] (* Vincenzo Librandi, Nov 10 2012 *)
    F[n_, q_]:= Sum[QBinomial[n-j-1, j, q^2]*q^Binomial[n-2*j,2], {j, 0, Floor[(n-1)/2]}]; Table[F[n, 10], {n, 0, 20}] (* G. C. Greubel, Dec 19 2019 *)
  • PARI
    q=10; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=q^(n-2)*v[n-1]+v[n-2]); v \\ G. C. Greubel, Dec 19 2019
    
  • Sage
    def F(n,q): return sum( q_binomial(n-j-1, j, q^2)*q^binomial(n-2*j,2) for j in (0..floor((n-1)/2)))
    [F(n,10) for n in (0..20)] # G. C. Greubel, Dec 19 2019
    

Formula

a(n) = 10^(n-1) a(n-1) + a(n-2).